新北市 112 學年度竹圍國小

研究成果發表作品說明書

作品名稱:舊桌大翻修-

學生舊桌結構強化與優化設計之研究

關鍵詞:側向拉力、振動位移、加速度

舊桌大翻修-學生舊桌結構強化與優化設計之研究

本研究探討學生桌子搖動原因與結構補強方法,利用側向拉力實驗器、自製的振動模擬器,研究學生桌在不同結構補強後,抗側向拉力位移、振動最大移動量,四項結果分析,結構補強的優劣。

實驗結果:

- (一) 桌子有嚴重結構上的問題,最嚴重桌子 A、B 柱結構不符合力學原理,原本應該在 A、B 柱的接點,往後接在櫃板柱,形成左右力量無法支撐,接榫較小且呈水平狀。
- (二)木釘補強法:側向拉力位移降低77.64%、搖動位移降低32.43%。
- (三)重新設計組裝法:學校桌子有嚴重結構問題, A、B 柱結構不符合力學原理,把原本應該在 A、B 柱的接榫,往後安裝在櫃板柱上。形成左右力量無法支撐,又因接榫較小且呈水平狀,成為整個桌子結構最弱的地方。經重新設計組裝後,側向拉力位移降低82.31%、搖動位移降低41.28%,置物間增加129.5%。

壹、 研究動機

學校有些比較老舊的課桌椅經常出現搖動的情形,經過學校多次修繕,還是會搖動。搖動的桌椅讓我在上課時,坐的很不安心,上課無法專心影響學習成效。課桌椅是人生中僅次於床鋪,是使用第二長時間的用具,我每天上課約8小時,坐在搖動的課桌椅很不舒服,學校又修不好。我們想研究是否有其他適用於課桌椅的補強方法,讓課桌椅經補強後,搖動的程度降到最低,增加耐用時間延長課桌椅的使用壽命、降低樹木的砍伐。

貳、研究目的

- 一、研究學校課桌椅搖動情況。
- 二、研究搖動的位置與結構相關。
- 三、研究不同的結構補強抗剪力與抗振動差異。
- 四、研究木釘補強最佳方式
- 五、研究改良現有桌椅提供學生使用。

參、文獻探討

一、木榫與接合力

- (一) 榫長增長會使受力面積增大,其中又以穿榫最大,而一般構件設計防止水平拔出的 踏步大頭榫,也比同榫長的單向直榫抵抗彎矩大,李佳韋(2007)。
- (二)引拔強度以橢圓榫最大,次為方榫,木釘接合最小,構件材料以紅櫟木最佳,次為 橡膠木,柳杉最差,楊淑惠(1989)。

二、學生桌椅的要件

學童認為最重要之前三項屬性為『安全性』、『堅固耐用』、『能保持良好坐姿』;而老師認為最重要者依序為『安全性』、『學童之間不會互相妨礙』、『能保持良好坐姿』林靜宜(1994)。

三、白膠

(一)成分:聚醋酸乙烯酯(Polyvinyl acetate,也稱作聚乙酸乙烯酯,簡稱PVA、PVAc) 是一種有彈性的合成聚合物。聚乙烯醇產品的水解率一般在87%至99%之間。聚醋酸乙 烯酯是弗里茨·克拉特1912年在所德國發現。多以乳劑的形式作為多孔材料,特別是 木材的膠粘劑。(維基百科)。

(二) 常見白膠種類

3761 強力接著劑白膠耐水性、乾燥後呈現透明,3670 乾掉呈現白色,3761 乾掉呈現透明,300 強力接著白膠,黏力超強,比3670 和3671 黏力更強(南寶樹脂)。

四、常用學生桌結構補強法

表2常用木材結構補強法優缺點分析表

The property of the property o							
補強方法	補強工法要件	優點	缺點				
1.L型鐵片接點	鐵片加強接點結構強度	施工容易,速度快	結構強度較差				
左右兩側	鐵月加强役		有不美觀				
2.L型鐵片接點	鐵片加強接點結構強度	施工容易,速度快	結構強度較差				
下方	鐵月加强按點結構 强及	他工合勿,还及伏	有不美觀				
3. T 型型鐵片接	鐵片加強接點結構強度	施工容易,速度快	結構強度較強				
點下方	鐵月加强役	他工合勿,还及伏	但不美觀				
4. 加強螺絲後方	螺絲鎖在接點後方	施工容易,速度快	結構強度較差				
5. 加強螺絲左右	螺絲鎖在接點左右兩側	施工容易,速度快	結構強度較強				
兩側		加工分列,还及伏	但不美觀				

表 3 本究木材結構補強法優缺點分析表

6. 斜撐下方	斜撐增加結構強度	結構強度較佳	施工較複雜
0. 113 1 77	7 13 · 13 / 12 / 12 / 12 / 12 / 12 / 12 / 12 /	"时得五久"人区	施工時間較長
 7. 木釘補強後方	接點後方打木釘增加強	結構強度較佳,施工完後	施工較複雜
1. 不到相思极力	度	與原來幾乎相同	施工時間較長
8. 木釘補強左右	接點左右兩側打木釘增	結構強度較佳,施工完後	施工較複雜
兩側	加強度	與原來幾乎相同	施工時間較長
9. 白膠灌注	在接點挖一個小洞,灌入	結構強度較佳,施工完後	施工較複雜
	白膠	與原來幾乎相同	施工時間較長
10. 白膠灌注+	在接點挖一個小洞,灌入	結構強度較佳,施工完後	施工較複雜
木釘補強後方	白膠,再打入木釘	與原利用牽引線綁在桌	施工時間較長
		子標示桿左右兩側。來幾	
		乎相同	

五、名詞解釋

- (一)搖動位移:利用本實驗自製的振動器實驗設備將桌子左右搖動後,觀察左右方向的 最大位移量(圖1),主要目的是檢測桌子搖動的情況。
- (二)側向位移:利用本實驗自製的側向拉力實驗器,以牽引線綁在桌子標示桿左右兩側, 另在牽引線下方吊重12公斤水泥塊,觀察吊重前後,桌子的側向位移大小(圖2)。 主要目的是檢測桌子的結構強度。

肆、研究器材、設備與前置研究

- 一、設備:自製剪力測試台、自製振動模擬器、結構強度測試器、破壞強度實驗設備、手機 震動加速度 APP、數位相機、吊秤 300KG、電動螺絲起子、木工鑽頭(5~10mm)、木工鋸 子、小鑽台、鑽孔定位器。
- 二、器材:木釘(6 mm、8 mm、10mm、12mm)各100支、木工白膠3761、3760、300各5包(1公斤),太棒膠2、3各3罐(473m1)、L型角片100片(長度60mm、寬度18mm)、L型寬30mm、長50mm、螺絲2吋(500支)、螺絲1吋500支。
- 三、分析測量工具:手機 APP 軟體(Vibsensor)記錄震動加速度,每秒記錄 100 次。分別左右 X 軸、前後 Y 軸、上下垂直 Z 軸的最大加速度與平均加速度,加速度監測最大記錄值: 20m/sec²、平均加速度 10m/sec²。

四、實驗設備說明:

(一)第二代自製振動器實驗設備

我們多次改良與修正的搖動機做為自製振動實驗設備(圖1)。又因桌子在搖動實驗時經常發生位移、傾到、站立不穩的情況,所以我們先把水平搖動台加裝四顆凸起的螺絲釘,將桌腳放置在凸起的螺絲釘上,避免桌子移動。另在桌腳下方配重12公斤與上方配重4公斤避免桌子傾倒,如此便可以加強搖動力量。

操作說明:

- 將桌腳放置在凸起的螺絲釘上方用力下 壓將桌子固定。
- 2. 下方配重 12 公斤、上方配重 4 公斤。
- 3. 放置監測手機在上方。
- 4. 打開手機振動 APP。開始搖動 1 分鐘。
- 5. 利用 IPAD 在前方錄影搖動位移監測器搖動的大小,錄影完後,利用慢速播放紀錄搖動最大位移量。

圖 1 自製振動器實驗設備

(二)側向拉力實驗設備(圖2)

因為學校桌子經常推來推去,受到側向的力量最多,桌子側向(左右方向)搖動也最大, 我們想利用側向拉力來了解桌子的搖動情況。

操作說明:

- 將桌子桌腳放置在凸起的螺絲釘上方用力下壓將桌子固定。
- 2. 上方配重 12 公斤,重壓避免桌子傾倒、 移動。
- 3. 利用牽引線綁在桌子標示桿左右兩側 (如圖 3)。再將牽引線穿過定滑輪。
- 4. 在牽引線下方吊重 12 公斤水泥塊(如圖4)。
- 5. 觀察吊重前後,桌子的側向位移大小(如 圖 5)。

圖 2 側向拉力位移實驗器

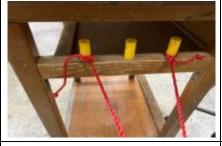


圖3牽引線綁在桌子標示桿左 右兩側

圖 4 吊重 12 公斤水泥塊

圖 5 桌子的側向位移大小

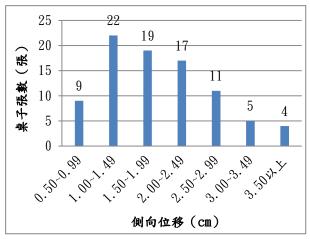
(三)結構強度與破壞強度設備(如圖6、圖7)

圖 6 結構強度測試器操作方式

圖 7 破壞強度實驗設備吊重 12 公斤

伍、研究方法與過程

一、有多少桌子會搖動影響學生上課?


調查全校學生桌子,利用自製振動器,檢測桌子的搖動程度。

(一)實驗方法

- 1. 利用第二代自製振動器實驗設備(圖1),檢測桌子的搖動最大加速度、平均加速度、 最大搖動位移量。
- 2. 利用側向拉力實驗設備(圖2)檢測桌子側向拉力位移量。
- 3. 不同型號的桌子 135 型、140 型、145 型、150 型、155 型共 5 型 87 張。

4. 振動模擬器 (平均加速度 0.5m/sec²最大加速度 1.9 m/sec²)。

(二)實驗結果

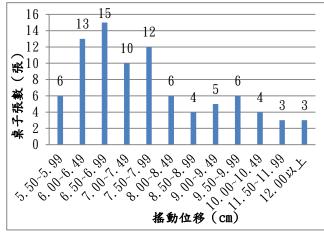
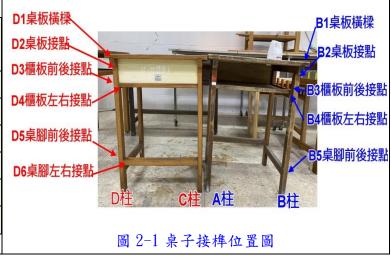


圖 1-1 側向拉力與桌子數量

圖 1-2 搖動位移與桌子數量

(三)實驗結果分析


- 1. 不會搖動或輕微搖動的桌子約佔 30%,會搖動的約佔 50%,嚴重搖動的約佔 20%。
- 2. 學校的桌子需要補強的數量佔比約 70%。
- 3. 拉力側向位移超過 1. 50cm、搖動位移超過 7. 00cm、都需要做補強。

二、桌子搖動的位置、搖動大小與結構關係?

(一)實驗方法

- 1. 檢查會搖動的學生桌接點鬆脫的位置。
- 2. 不同型號的桌子 135 型、140 型、145 型、150 型、155 型共 5 型 5 張。
- 3. 依據搖動位移的大小,分別紀錄搖動的位置。一張桌子 A、B 柱各 5 個接點, C、D 柱各 6 個接點,合計 22 個接點。
- 4. 接榫位置分類編碼如下表

表 2-1 接榫位置對照表							
桌柱	A	В	С	D			
接榫作用	柱	柱	柱	柱			
1 桌板横樑	A1	B1	C1	D1			
2 桌板接底	A2	B2	C2	D2			
3櫃板前後連桿	A3	В3	C3	D3			
4 櫃板左右連桿	A4	B4	C4	D4			
5 桌腳前後連桿	A5	В5	C5	D5			
6 桌腳左右連桿	X	X	C6	D6			

(二)實驗結果

表 2-2 A、B 柱搖動情況分析表

搖動位置 搖動位 移大小	A1	A2	A3	A4	A5	B1	B2	В3	B4	B5
5. 50~5. 99	無	無	輕	輕	輕	無	無	輕	輕	輕
6. 00~6. 49	輕	無	無	輕	中	輕	無	無	輕	中
6. 50~6. 99	中	輕	輕	中	中	中	輕	輕	中	中
7. 00~7. 49	中	輕	中	中重	中	中	輕	中	中重	中
7. 50~7. 99	中	中	中	重	中	中	中	中	重	中
8. 00~8. 49	中	中	中	嚴重	中重	中	中	中	嚴重	中重
8. 50~8. 99	中	中	中	嚴重	重	中	中	中	嚴重	重
9. 00~9. 49	重	重	重	嚴重	嚴重	重	重	重	嚴重	嚴重
9. 50~9. 99	重	重	重	非常嚴重	嚴重	重	重	重	非常嚴重	嚴重
10.00 以上	嚴重	嚴重	嚴重	超級嚴重	嚴重	嚴重	嚴重	嚴重	超級嚴重	嚴重

(三)實驗結果分析:由表 2-2 發現,A、B 柱搖動比較嚴重的位置在 A4 和 B4。結構最差, 最會搖動,所以是最需要優先補強的位置。

表 2-3 C、D 柱搖動情況分析表

搖動位置 搖動位 移大小	C1	C2	C3	C4	C5	C6	D1	D2	D3	D4	D5	D6
5. 50~5. 99	無	無	無	輕	輕	輕	椞	無	無	輕	輕	輕
6. 00~6. 49	輕	無	輕	中	中	重	輕	無	輕	中	中	重
6. 50~6. 99	中	輕	中	重	中	重	中	輕	中	重	中	重
7. 00~7. 49	中	輕	中	重	中	重	中	輕	中	重	中	重
7. 50~7. 99	中	中	中	重	中	重	中	中	中	重	中	重
8. 00~8. 49	中	中	中	嚴重	中重	嚴重	中	中	中	嚴重	中重	嚴重
8. 50~8. 99	中	中	中	嚴重	重	嚴重	中	中	中	嚴重	重	嚴重
9. 00~9. 49	重	重	重	非常嚴重	嚴重	非常嚴重	重	重	重	非常嚴重	嚴重	非常嚴重
9. 50~9. 99	重	重	重	超級嚴重	嚴重	超級嚴重	重	重	重	超級嚴重	嚴重	超級嚴重
10.00 以上	嚴重	嚴重	嚴重	超級嚴重	嚴重	超級嚴重	嚴重	嚴重	嚴重	超級嚴重	嚴重	超級嚴重

(三)實驗結果分析:由表 2-3 發現, C、D 柱搖動比較嚴重的位置有 C4、D4、C6、D6,結構 最差,是最需要優先補強的位置。

三、找出桌子接點榫接大小與樣式與桌子左右搖的原因?

李佳韋(2007)研究發現榫長增長會使受力面積增大,其中又以穿榫最大,而一般構件 設計防止水平拔出的踏步大頭榫,也比同榫長的單向直榫抵抗彎矩大。榫長度、大小、結構 會影響結構物的抗力的效果。

(一)實驗方法;將桌子 145 型完全拆解後,測量榫接,利用電子游標尺,測量榫頭、榫洞 大小,測量3次求平均值。

(二)實驗結果

圖 3-1 前後向 8 個接榫接桿粗 大,接榫大,長度30公分

圖 3-2 左右向 6 個接榫接桿細 │ 圖 3-3 桌板 4 個接榫 小,接榫小,長度48公分

	表 3	-1 杲于榫接尺寸與功能	分析表
4	榫頭(cm)	榫洞(cm)	榫頭線

	次 0 1 米 1 1 1 1 1 2 7 C 1 3 C 7 M M M M M M M M M M M M M M M M M M										
尺寸	榫頭(cm)				榫洞((cm)		榫頭總	榫頭總		
位置	形式	長	寬	厚	形式	長	寬	高	體積 cm³	體積 cm³	連接功能
A1 · B1	燕尾	35. 2	2.8	0.7	燕尾	35. 2	2.8	0.7	34. 50	34. 50	桌板變形、連接桌面
A2 · B2	直榫	2.5	3. 9	0.9	直洞	3. 0	3.9	0.9	8. 78	10.53	桌面、前後向剪力
A3 · B3	直榫	2. 5	3. 9	0.9	直洞	3. 0	3.9	0.9	8. 78	10.53	櫃板、前後向剪力
A4 \ B4	直榫	2. 5	2. 9	0.9	直洞	3. 0	2. 9	0.9	6. 53	7. 83	櫃板、左右向剪力
A5 \ B5	直榫	2.5	3. 9	0.9	直洞	3. 0	3.9	0.9	8. 78	10.53	桌腳、前後向剪力
C1 · D1	燕尾	35. 2	2.8	0.7	燕尾	35. 2	2.8	0.7	34. 50	34. 50	桌板變形、連接桌面
C2 · D2	直榫	2. 5	3. 9	0.9	直洞	3.0	3.9	0.9	8. 78	10.53	桌面、前後向剪力
C3 · D3	直榫	2.5	3. 9	0.9	直洞	3. 0	3.9	0.9	8. 78	10.53	桌面、前後向剪力
C4 \ D4	直榫	2.5	2.0	0.9	直洞	3. 0	2.0	0.9	4. 50	5. 40	櫃板、左右向剪力
C5 \ D5	直榫	2.5	3. 9	0.9	直洞	3.0	3.9	0.9	8. 78	10.53	桌腳、前後向剪力
C6 · D6	直榫	2.5	2. 9	0.9	直洞	3. 0	2. 9	0.9	6. 53	7. 83	桌腳、左右向剪力

(三)實驗結果分析

- 1. 上表 3-1 發現支撐左右向剪力為 A4、B4、C4、D4、C6、D6 共 6 個榫接,總體積為 35.12cm³,左右向木桿長 48cm(圖 3-1)。
- 2. 支撐前後方向剪力為 A3、B3、A5、B5、C3、D3、C5、D5 共 8 個榫接,總體積為 70. 24 cm³ (圖 3-2)。前後向木桿長 30cm。
- 3. 桌子支撑左右向共 6 個榫接,總體積為 35.12cm³;前後向共 8 個榫接,總體積為 70.24 cm3。因為左右向榫接體積太小、結構較差,所以桌子左右向容易搖動。

四、找出抗力距與抗破壞力最佳結構補強的方法?

(一)不同結構補強抗力距與抗破壞力強度測試

1. 研究方法

(1) 製作斜撐雙面、斜撐單面、T型雙面、T型單面、L型雙面、L型單面、螺絲側向、木 釘補強,白膠灌注、白膠灌注+木釘補強後方,共10種,每一種製作1支,進行抗力 距測試。

- (2) 利用自製剪力測試台,測試最大的抗剪力強度、破壞剪力強度,與損毀的情況。
- (3)因為補強後桌腳的結構強度很大,所以利用 5 公分 L 型角鋼,自製固定架。將固定架 固定牆壁上,避免鬆脫移位,再將補強結構補利用 2 分螺絲固定在固定架上鎖緊,避 免鬆脫圖 4-10 木材固定架)。
- (4) 將不同的補強結構,放置在實驗台上。
- (5) 結構強度測試:利用 3 公斤的重量,在不同距離吊重,測量木桿的傾斜角度。當傾斜角度越小,表示補強結構越佳(圖 4-12 結構強度測試器操作方式)。
- (6) 結構破壞強度:利用 12 公斤的重量,吊重,距離由小到大,直到結構破壞為止。距離越大,表示補強結構越佳(圖 4-13 破壞強度實驗設備吊重 12 公斤)。

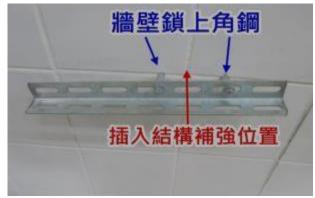


圖 4-10 木材固定架

圖 4-11 結構強度測試器

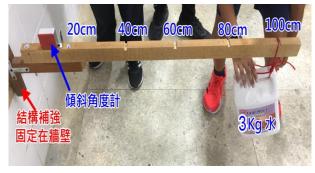


圖 4-12 結構強度測試器操作方式

圖 4-13 破壞強度實驗設備吊重 12 公斤

2. 實驗設計

- (1)操作變因:不同的結構補強方式,共計10種。
- (2)控制變因:桌子的結構位置、吊重重量(3公斤、12公斤)、吊重距離(20 cm~100cm)。

圖 4-14 T型單面破壞實驗

圖 4-15 斜撐單面破壞實驗

圖 4-16 側向螺絲破壞實驗

3. 實驗結果結構破壞實驗結構破壞情況

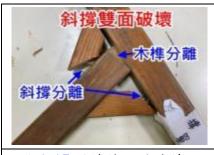


圖 4-17 斜撐雙面破壞情況

圖 4-18 斜撐單面破壞情況

圖 4-19 T型雙面破壞情況

圖 4-20 T型單面破壞情況

圖 4-21 L型雙面破壞情況

圖 4-22 L型單面破壞情況

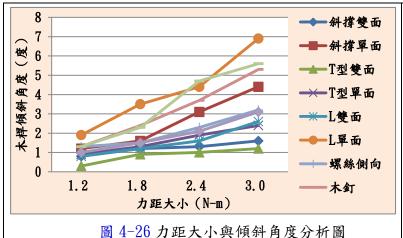


圖 4-23 斜側向螺絲破壞情況

圖 4-24 木釘補強破壞情況

圖 4-25 木釘+白膠破壞情況

4. 結構補強抗力距與破壞力實驗結果

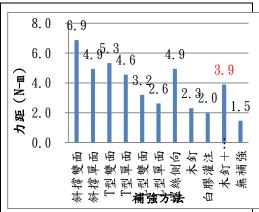


圖 4-27 補強方法與破壞力距強度 統計圖

5. 實驗結果分析

- (1)由圖 4-26、4-27 發現,傾斜角度最小前 5 名,依序為: T 型雙面、斜撐雙面、L 型雙面、 T型單面、木釘加白膠。
- (2) 研究發現學校常用的 L 型補強單面, 結構強度不佳, 為何還要用?
- (3) 木釘+白膠補強,雖然不是結構最佳,但是桌子經過補強後,外觀與原來的桌子無明顯 的差異。

(二) 最佳結構補強三種抗振動測試

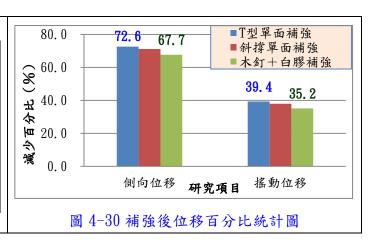
由研究四發現,桌子結構補強最佳的有斜撐雙面與「型雙面,但是學生桌子,有很多位 置無法進行雙面補強,所以我們選擇斜撐單面、T型單面、木釘+白膠三種補強方式,進行下 一步實驗。由研究三結果發現,桌子撐左右向共 6 個榫接,總體積為 35.12cm³;前後向共 8

個榫接,總體積為 $70.24~\text{cm}^3$ 。因為左右向榫接,體積太小,結構較差,所以桌子左右向容易搖動,最需要優先補強的位置依序是 C6D6、C4D4、A4B4,所以我們先進行位置 C6D6 補強。

1. 研究方法

- (1) 依據研究三實驗結果,找出最佳補強方法3種,進行桌子結構補強。
- (2) 將 3 種不同的補強結構,利用側向拉力實驗器,檢驗桌子在 12 公斤的側向拉力下,桌子側向位移的情形。

- (3) 將 3 種不同的補強結構,放置在振動模擬器進行振動實驗。
- (4)每一種補強結構振動1分鐘,測量最大加速度平均、加速度、振動最大位移,實驗5次 求平均值。
- (5) 找 3 張搖動嚴重的學生桌 145 型,進行結構補強研究。同一張桌子進行 3 種不同的結構補強方式:先檢測 T 型鐵片補強(圖 4-28),實驗後,將鐵片拆除裝設斜撐補強(圖 4-29)


2. 實驗設計

- (1)操作變因:最佳結構補強3種,比對組(沒有補強)。
- (2)控制變因:桌子的型號、振動方向、振動大小、振動時間 60 秒。振動模擬器(平均加速度 0.5m/sec^2 、最大加速度 1.9 m/sec^2)。

(三) 研究結

表 4-1 不同結構補強實驗結果統計表

補強方式	側向位移	搖動位移
用強力式	(cm)	(cm)
無補強	2.63	9.86
T補強	0.72	5. 98
斜撐補強	0. 76	6. 12
木釘+白膠補	0. 85	6. 39
強		

實驗結果分析:由表 4-1 發現,側向位移、搖動位移以T型鐵片補強減少最多,補強效果較佳。最大加速度平均加速度以木釘+白膠補強減少最多,補強效果較佳。由圖 4-30 三種結構補強方式,對側向拉力位移、搖動位移、結構補強效果階佳。

(三) 最佳三種補強結構 24 小時抗耐用度測試

學生桌子要長時間使用,以一天8小時,一年上課天數約200天計算,使用20年共計要使用32000小時。所以桌子的耐用非常重要,補強後桌子耐用程度,也是要考慮的重要因素。

1. 實驗方法

- (1)研究四進行耐用度測試,最佳補強3種,白膠+木釘補強、斜撐補強,T補強每一種補 強結構製作3張桌子,進行耐用度測試。
- (2) 將 3 種不同的補強結構,利用側向拉力實驗器,檢驗桌子在 12 公斤的側向拉力下,桌子的變形大小。
- (3) 利用自製振動模擬器,測試進行耐用度測試。
- (4) 將不同的補強結構,放置在振動模擬器進行振動實驗。
- (5) 每一種補強結構振動 24 小時,觀察實驗後桌子的搖動情況。
- (6) 先做 T 補強 3 張桌子,進行 24 小時耐振測試,實驗完後將 T 補強拆除,用相同的 3 張桌子接做斜撑補強,實驗完後將斜撐補強拆除,最後做白膠+木釘補強。利用相同的桌子進行實驗以減少實驗誤差。
- (7) 比對耐用度測試前後桌子的搖動程度變化。每一張實驗前後做 5 次求平均值,再將 3 張桌子求平均值求實驗前後的變化量。

2. 實驗設計

- (1)操作變因:最佳補強結構白膠+木釘補強、斜撐補強,T補強共計3種,比對實驗前後 振動大小差異。
- (2) 控制變因: 桌子的型號(145 型 3 張)、振動方向、補強位置(C6D6) 振動大小、振動時間 60 秒。振動模擬器(平均加速度 0.5m/sec², 最大加速度 1.9 m/sec²)。

3. 研究結果

表 4-2 不同結構補強 24 小時耐用度測試分析表

實驗項度	側向移量(cm)	搖動位移(cm)
實驗前後變化		名的
木釘+白膠實驗前	1.12	6. 69
木釘+白膠實驗 24 小時後	1. 32	6. 94
木釘+白膠實驗前後變化量	0.08	0. 25
T補強實驗前	0.98	6. 67
T補強實振動驗後24小時後	1. 43	7. 17
T補強實前後驗變化量	0.45	0. 51
斜撐強實驗前	1.04	6. 60
斜撐強振動實驗後24小時後	1. 36	7. 14
T補強實前驗變化量	0. 32	0. 54

(三)實驗結果分析:由表 4-2 發現:24 小時耐用度測試後,木釘+白膠的側向拉力位移、 搖動位移、最大、平均加速度增加最少,表示耐用度最佳。

五、利用木釘補強法強化桌子結構

(一) 木釘的支數與施工的順序位置

由研究六結果發現,利用木釘補強法,耐用度最佳。因為補強孔小,且利用木釘補強與桌子材顏色相近,不仔細看,外觀差異度不大。我們想進一步了解,如果木釘數量增加時,補強效果會更好嗎?桌子會更不容易搖動嗎?

由研究三結果發現,最需要優先補強的位置依序是 C6D6、C4D4、A4B4,所以我們先進行位置 C6D6 補強,接著進行 C4D4,最後進行 C4D4 補強。

1. 研究方法

- (1)由研究五的結果,進行不同支數木釘補強。我們將結構最差的位置,桌子下方左右後 横桿(C6D6),櫃板左右後横桿(C4D4),前方櫃板左右前横桿(A4B4),進行結構補
- (2) 找 3 張搖動比較嚴重的桌子 (145 型), 進行研究。
- (3) 先以2支木釘補強3張桌子C6D6的位置(圖5-1),實驗完後再以2支木釘補強C4D4的位置(圖5-2),最後補強2支木釘於A4B4位置(圖5-3)。利用相同的桌子進行實驗以減少實驗誤差。
- (4)為了更精確測量桌子的搖動情況,我們設計了側向拉力實驗器固定桌子位置後,利用 12 公斤的力量做側向牽引,之後測量桌子側向變形的大小。
- (5)每一張桌子進行5次搖動實驗,求三張桌子在搖動位移、最大加速度、平均加速度的平均值。

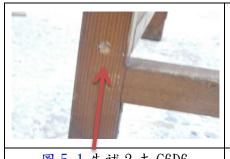


圖 5-1 先補 2 支 C6D6 桌子下方左右横桿

圖 5-2 再補強 2 支 C4D4 櫃子後方左右橫桿

圖 5-3 最後補強 2 支 A4B4 櫃子前方左右横桿

6. 實驗設計

- (1) 操作變因:木釘數量(2、4、6支木釘)對結構補強的影響。
- (2)控制變因:桌子的型號(145型3張)、振動方向(X軸)、振動大小、振動時間60秒。 振動模擬器(平均加速度0.5m/sec²最大加速度1.9 m/sec²)。

(二)研究結果

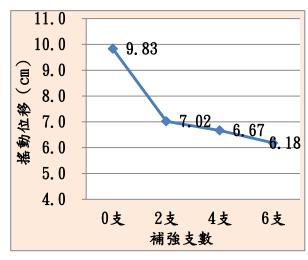


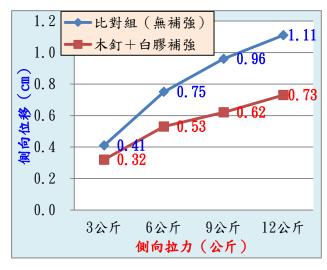
圖 5-4 木釘補強支數與側向位移

圖 5-5 木釘補強支數與搖動位移

(三)實驗結果分析

- 1. 桌子經補強 C6D6 榫接點後,結構加強。側向位移、搖動位移。
- 2. 當補強數量超過 2 支時,整體結構更強。在側向位移、搖動位移、下降效能有增強的 勢。

(二) 振動大小對最佳補強結構補強耐振影響


由研究七結果發現,桌子經過結構補強後,側向位移、搖動位移、最大加速度、平均加速度的數值有明顯下降的現象。我們想了解,如果加快振動模擬器的振動加速度,補強後的桌子與不會搖動的桌子在搖動位移、最大加速度和平均加速度方面會有差異嗎?

(一)研究方法

- 1. 由研究五經最佳結構補強後的桌子,進行更高強度、更高配重(12 公斤)的振動實驗。
- 2. 振動模擬器振動加速度強度為 1 (平均加速度 0.5m/sec²最大加速度 1.9 m/sec²)、強度 為 2 (平均加速度 0.6/sec²最大加速度 2.1 m/sec²)、強度為 3 (平均加速度 0.7m/sec² 最大加速度 2.3m/sec²),強度為 4 (平均加速度 0.8m/sec²最大加速度 2.7 m/sec²)。
- 3. 比對組為學校現有不會搖動的 145 型桌子。
- 4. 實驗組為經2支木釘補強的145型桌子,共計3張。
- 5. 每次搖動 60 秒,每一強度做 5 次搖動實驗,求平均值。
- 6. 以 3 公斤、6 公斤、9 公斤、12 公斤等重量進行側向拉力位移實驗,每一種重量測量 5 次 求平均值。
- 7. 在不同的振動強度的實驗下後觀察桌子的搖動情況。
- 8. 實驗設計
- (1)操作變因:振動強度大小,強度1、2、3、4(依據搖動機的強度設定)。

(2) 控制變因: 桌子型號 (145 型 3 張), 振動時間 60 秒、補強位置 (C6D6)、補強數量 (2 支)。

(二)實驗結果

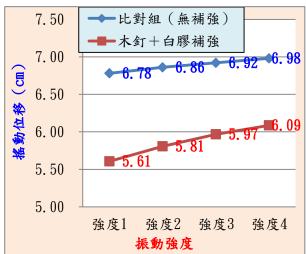


圖 5-6 側向拉力與位移量

圖 5-7 振動強度與搖動位移量

實驗結果分析

- 1. 由圖 5-6 研究發現,有補強的桌子側向位移比無補強減少 0.34cm,表示桌子經過補強後,結構強度增加,側向位移量減少。
- 2. 由圖 5-7 研究發現,有補強的桌子結構較佳,搖動位移較小表示經過木釘+白膠補強的桌子, 比現在使用桌子結構更佳。木釘+白膠的補強方式確實可以提升桌子的結構強度。

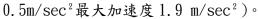
(三)不同的木釘長度越長補強效果越佳嗎?

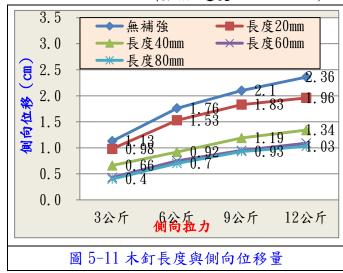
木釘打入接榫位置長度,越長時結構強度會好嗎?在抗側向位移、搖動位移與降低最大 加速度、平均加速度有差異嗎?

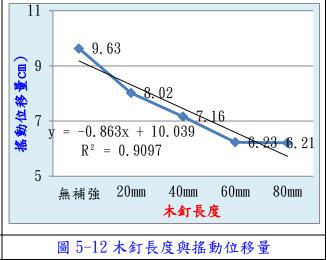
(一)實驗方法

- 1. 木釘直徑 10mm、長度為 20mm、40mm、60mm、80 mm。比對組為未補強前的 150 型桌子 3 張。
- 2. 實驗組為 145 型桌子補強 2 支木釘 6D6, 共計 3 張。
- 3. 先作未補強前的抗拉力實驗與振動實驗,先補強長度 20mm 在 C6D6 (圖 9-1) 左右向各 1 支長度 20mm,實驗完後,將長度 20mm 木釘利用電鑽鑽除後,將洞口加深到 40mm,做 40mm 的木釘補強 (圖 9-2),接著將長度 40mm 木釘利用電鑽鑽除後,將洞口加深到 60mm, 做 60mm 木釘補強,最後做 80mm 木釘補強(圖 9-3),共計要做 3 張桌子。
- 4. 每次搖動 60 秒,每一強度做搖動實驗 5 次求平均值。
- 5. 側向拉力位移量, 3 公斤、6 公斤、9 公斤、12 公斤, 每一種重量測量 5 次求平均值。
- 6. 在不同的木釘長度情況下,實驗後桌子的搖動情況。

圖 5-8 先補強長度 20mm (C6D6)


圖 5-9 再補強長度 40mm (C6D6)




圖 5-10 最後做 80mm 木釘補強 (C6D6)

7. 實驗設計

- (1) 操作變因: 木釘長度 20mm、40mm、6mm、80mm 比對組無補強。
- (2)控制變因:桌子型號(150型3張),振動大小、振動時間(60秒)、補強位置(C6D6)、 補強數量2支,木釘材質(直釘櫸木)直徑10mm。振動模擬器(平均加速度

(三)實驗結果分析

- 1. 木釘越長時,側向拉力位移、搖動位移、有越小的的趨勢。
- 2. 木釘長度 60mm 與 80mm, 在側向拉力位移、搖動位移、並無明顯的差異。

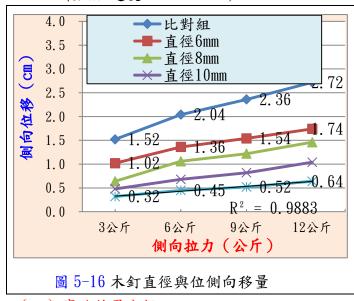
(四)木釘直徑越大補強效果越佳嗎?

木釘除了加強接榫的結合,也會擴大接榫體積,原有的接榫寬度 9mm,如果木釘直徑大 於寬度,提升桌子的抗側向拉力、搖動位移,降低平均速度、最大加速度有效嗎?

(一)研究方法

- 1. 配重 12 公斤下的振動實驗。
- 2. 木釘長度為 6 mm、8mm、10mm、12mm。

- 3. 比對組為未補強前的 150 型桌子 3 張。
- 4. 實驗組為 150 型桌子補強 2 支木釘 (C6D6) 後,共計 3 張。
- 5. 先補強直徑 6mm 在 (C6D6) 左右向各 1 支(圖 5-13) 直徑 6mm 實驗完後,將直徑 6mm 木釘利用電鑽鑽除後,將洞口加大到 8mm,做 8mm 的木釘(圖 5-14)補強,接著將直徑 8mm 木釘利用電鑽鑽除後,將洞口加大到 10mm,做 10mm 木釘補強,最後做直徑 12mm 木釘補強(圖 5-15),共計要做 3 張桌子。



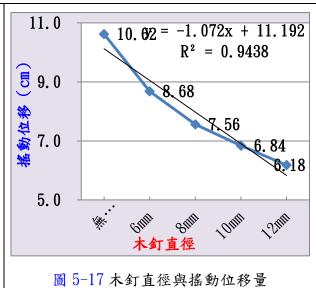

圖 5-13 先補強直徑 6mm

圖 5-14 再先補強直徑 8mm

圖 5-15 最後補強直徑 12mm

- 5. 每次搖動 60 秒,每一強度做搖動實驗 5 次求平均值。
- 6. 侧向拉力位移量, 3公斤、6公斤、9公斤、12公斤, 每一種重量測量5次求平均值。
- 7. 在不同的木釘直徑情況下,實驗後桌子的搖動情況。每張桌子不同的木釘直徑做5次, 求平均,再將3張桌子平均。
- 8. 實驗設計
- (1) 操作變因: 木釘直徑 6mm、8mm、10mm、12mm、比對組無補強。
- (2)控制變因:桌子型號(145型3張),振動大小、振動時間(60秒)、補強位置(C6D6)、補強數量2支,木釘材質(直釘櫸木)。振動模擬器(平均加速度0.5m/sec²最大加速度1.9 m/sec²)。

(三)實驗結果分析

1. 由圖 5-16、圖 5-17 發現,木釘直徑越大時,側向拉力位移、搖動位移、有越小的的趨勢, 表示木釘越大,結構補強效果越佳。

六、自製大頭木釘提升木釘結構補強效果

(一) 自製木釘抗力距與抗破壞力的提升效果

由實驗十發現,木釘越大時,桌子補強的結構越強,所以側向拉力位移,搖動位移,最大加速度與平均加速度,有越小的的趨勢,我們也發現現有的木釘都是屬於內置結構木釘,木釘釘完後會在接合處,對於抗力距的效果較差,我們想了解,如果將木釘尾端加大(類似大頭榫)的功能,是不是可以達到增加抗力距的效果?

(一) 研究方法

- 1. 在購物網站上購買,木棒切割器,自行製作直徑 12mm 與 15mm 木棒 (圖 6-1)。
- 2. 將木棒鋸成 70mm 長度(圖 6-2),在木棒末端利用棉線纏繞到木棒 12mm 直徑 15mm, 木棒 15 mm 直徑到 18mm,再用三秒膠固定與加強棉線的強度(圖 6-3)。
- 3. 製作不同補強結構,木釘 12mm、木釘 12mm 大頭榫、木釘 15 mm、木釘 15mm 大頭榫、木釘 15mm 大頭榫+側向 F30 木工釘補強。

圖 6-1 圓柱切割機

圖 6-2 木釘長度 7.0cm

圖 6-3 完成的自製木釘

4. 將桌腳T型結構鑽孔後利用不同的木釘,釘入結構位置,強化結構位置(圖 6-4、6-5)。

圖 6-4 自製木釘補強結構圖 1

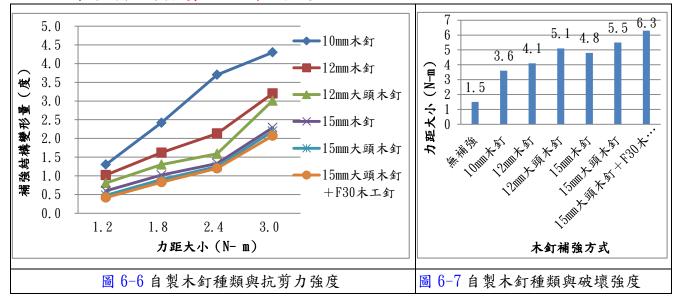


圖 6-5 自製木釘補強結構圖 2

- 5. 利用自製剪力測試台,測試最大的抗剪力強度,破壞剪力強度,與損毀的情況。
- 6. 其他與研究四相同
 - (1) 操作變因:不同的木釘結構補強方式,共計6種。
 - (2) 控制變因:桌子的結構位置、吊重重量(3公斤、12公斤)、吊重距離(20~100cm)

(二)實驗結果

1. 自製木釘種類與抗剪力、破壞力強度

(二)實驗結果分析:

- 1. 由研究結果(圖 6-6)發現,木釘越大時,木桿的傾斜角度越小,抗剪力的效果越佳, 有大頭釘設計的木釘抗剪力強度,約比沒有的高 20%。

(二) 自製木釘補強學校桌子的結構補強效果

依據研究十發現,如果將木釘後端加大形成大頭狀,對於補強結構有提升約20%效果。

(一) 實驗方法

- 1. 到班級教室找會搖動的桌子,型號以最多的 140、145 型為主,共計 3 張,進行結構補強(圖 6-8)。
- 2. 結構 C6、D6 用 15mm 大頭釘榫補強, C4、D4、A4、B4 因木桿較小(2.2公分) 只能用 10mm 大頭榫補強。



圖 6-8 木釘補強位置圖

- 3. 將補強後的桌子放置在,振動器上每次搖動 60 秒,每一強度做搖動實驗 5 次求平均值。
- 4. 侧向拉力位移量 12 公斤,每一種重量測量 5 次求平均值。
- 5.10 張桌子的實驗結果求平均數。
- 6. 實驗設計
 - (1) 操作變因:檢測桌子結構補強後,結構強度的提升效果。
 - (2)控制變因:桌子型號(140、145型5張),振動大小、振動時間(60秒)、補強位置(C6D6)、補強數量15mm 大頭釘各1支,(C4D4、A4B4)補強10mm 大頭榫各1支。總計補強6支木釘。振動模擬器(平均加速度0.5m/sec²最大加速度1.9 m/sec²)。

(二)實驗結果分析

- 1. 侧向拉力位移,由 2. 20cm 降低到
- 0.49cm,與不會搖動的桌子 0.4cm,側 向位移量相近,減少了 77.64%。
- 2. 搖動位移,由 8. 52cm 降低到 5. 76cm, 補強後的搖動位移量,與不會搖動的桌子 5. 5cm 相近,降低了 32. 43%。

表 6-1 桌子補強前後數據變化統計表								
檢測項目	側向位移	搖動位移						
實驗前後	(cm)	(cm)						
補強前	2. 20	8. 52						
補強後	0.49	5. 76						
實驗前後降低百分比(%)	77. 64	32. 43						

七、研究改變桌子結構降低桌子搖動與增加儲存空間

由實驗十二發現,我們現在坐的桌子有嚴重結構上的問題,最嚴重的地方就是桌子 A、B 柱結構不符合力學原理,把原本應該在 A、B 柱的接點,往後接在櫃板柱上(圖 7-1),形成左右力量無法支撐的情況。與 40 年前桌子(圖 7-2)的設計有明顯的差異,又因為接榫較小且呈水平狀,加上沒有支撐力的背板,細小橫桿(圖 7-3),無論如何補強,只要在桌子前側(A、B 柱)位置用力左右用力搖動,桌子還是會搖動。

圖 7-1 A、B 柱的接點往後在櫃板柱上

圖 7-2 30 年前舊桌子 A、B 柱 與櫃板結構

圖 7-3 現在桌子細小的橫桿

(一)研究方法

- 1. 我們將拆解舊有的 145 型桌子,再以加強結構的方法,製作屬於自己的桌子。
- 2. 利用 1. 8cm 的木心板櫃板強化櫃板的支撐力,使櫃子內部可以承重。將櫃板延伸到 A、B 柱與 A、B 柱連結,強化左右向的結構,並加大櫃子的使用空間(圖 7-5 位置 1)。
- 3. 利用厚度 1. 8cm 的松木板,在 A、B 柱與櫃板下方位置做三角形斜撐補強,強化左右向的結構,降低左右向的搖動(圖 7-5 位置 2)。
- 4. 增加桌腳小櫃,可以放置書本與小物,提升前後向的結構強度(圖7-8位置3)。
- 5. 增設櫃子的側板,防止東西掉落,提升前後向的結構強度(圖7-8位置4)。
- 6. 在後櫃板拆除,改以1.8cm 木心板7,將結合桌板、C、D 柱與櫃柱四個位置, 形成完整的結構,強化左右向與櫃子的強度(圖7-9位置5)。
- 7. 將重新製作的桌子放置在振動器上,每次搖動 60 秒,每一強度做搖動實驗 5 次求平均值。
- 8. 側向拉力位移量12公斤,每一種重量測量5次求平均值。
- 9. 以 3 張經重新製作之桌子的實驗結果求平均值。
- 10. 實驗設計
 - (1) 操作變因:檢測重新設計後後,結構強度的提升效果。
 - (2) 控制變因:桌子型號 140 型 1 張、145 型 2 張,振動大小、振動時間 (60 秒)。振動模擬器 (平均加速度 0.5m/sec²最大加速度 1.9 m/sec²)。

圖 7-4 移除背板與櫃板

圖 7-5 裝設新櫃板

圖 7-6 裝設側板

圖 7-8 桌子改良後側面圖

圖 7-9 桌子改良後背面圖

(二)研究結果

表 13-1 改變桌子前後數據變化統計表

觀測數據實驗前後	側向位移 (cm)	搖動位移 (cm)	置物空間
實驗前	2.60	9.06	10.56 公升
實驗後	0.46	5. 32	24.24 公升
實驗前後增減百分比(%)	-82. 31	-41. 28	129. 5

(三)實驗結果分析

- 1. 側向拉力位移,由 2. 60cm 降低到 0. 46cm,減少了 82. 31%,與不會搖動的桌子 0. 4cm, 量相近。
- 2. 搖動位移,由 9.06cm 降低到 5.32cm,補強後的搖動位移量,降低了 41.28%。與不會 搖動的桌子 5.5cm 更低。
- 3. 置物空間增加 129.5%。

八、實際測試設計的桌子實用性

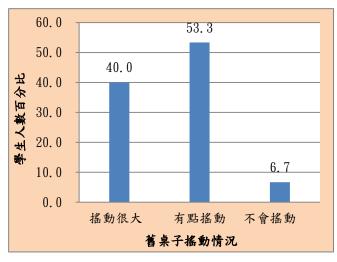
我們的製作改良的桌子,經過測試結構增強,櫃子空間提升120%,真的可以用嗎?

(一)研究方法

1. 選擇 3 年級 1 個班, 共 30 為學生作為實驗對象。2. 將原有的舊桌子, 重新設計改良為我們設計的桌子。3. 學生使用 2 週後做問卷調查, 了解學生的使用情況。

圖 8-1 學生使用現況

圖 8-2 桌子經改造後的結構與造型


(二) 問卷內容

各位同學你好:

我們是學校的科學研究小組,今年我們研究學校學生用桌子的搖動情況與改善桌子搖動的方法,我們共製作了30張桌子提供學生使用,你是我們的研究對象,經過你使用我們設計的桌子後,請協助我們進行問卷調查,謝謝你。

1. 桌-	子的搖動情況改變	<u>å</u>		
(1)	以前的桌子會左右	搖動嗎? (單選題)	
]搖動很大	□有點搖動	□不會搖動	
(2)	我們設計製作的桌	子會搖動左右嗎?		
]搖動很大	□有點搖動	□不會搖動	
(3)	我們設計的桌子與	2以前的桌子搖動的	情況比較?	
[] 更會搖動	□沒有差異	□不會搖動	
2. 桌子	的使用方便性改	變		
(1)	以前的桌子置物櫃	置足夠你放置學習用	的物品嗎?(單選題)	
	□不足夠	□還可以	□足夠	
(2)	我們設計的桌子置	生物櫃,可以提你放	置學習用品方便性嗎? (單選題)	
	□可以	□沒有差異	□不可以	
(3)	我們設計的桌子可	以提升你學習上的	方便性嗎? (單選題)	
	□可以 [□沒有差異	□不可以	
3. 我們]設計的桌子你使	用過後的滿意度,滿	有分為 100 分	
請	問你給我們幾分	:		
4. 你使	用過我們設計的	桌子後,還有哪些的	快失,需要我們改進的地方?	

(三)研究結果

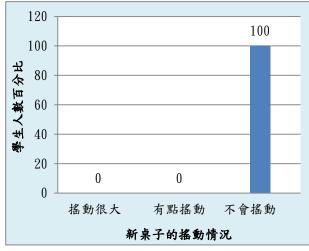


圖 8-3 舊桌子的搖動情況

120 100 100 80 40 40 20 0 更會搖動 沒有差異 不會搖動 新桌子搖動比較

圖 8-4 新桌子的搖動情況

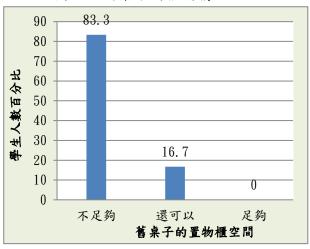


圖 8-5 新舊桌子的搖動比較

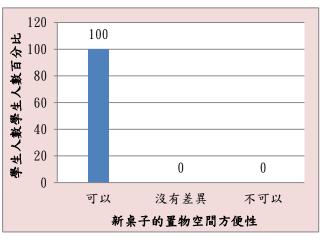


圖 8-6 舊桌子的置物櫃空間

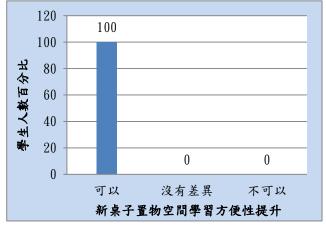


圖 8-7 新桌子的置物空間方便性

圖 8-8 新桌子置物空間學習方便性提升

- 3. 我們設計的桌子你使用過後的滿意度,滿分為 100 分:請問你給我們幾分:__98. 6 分__
- 4. 其他建議: 側邊桌腳櫃裝門,方便取物品。

九、設計可調高度的桌子降低製作成本提升使用率

小學的桌子高度從 110 型~165 型,共計有 13 型桌子,我們發現桌子的型號太多,學校要準備各種型號的桌子做預備,地下室大量的有桌子,可是經常性發現部分的型號的桌子不足。我們想如果將現有的桌子型號 13 種,設計為 3 種再利用高度調整器調整桌子的高度。

(一) 研究方法

- 1. 將現有的 13 型桌子,低年級 110~125 共 4 型改為 1 種,130~150 共 5 型改為 1 種。 150~170 共 4 型改為 1 種。
- 2. 桌子以現有的舊桌子,重新設計製作。
- 3. 將研究八的桌子改良後,腳踏板以下部分長度 11.5 公分鋸除後,最底端裝設 M8 預 埋螺絲帽,作為裝設椅腳位置。
- 4. 利用 4 公分松木圓柱, 切成長度 3. 0 公分、5. 1 公分、7. 3 公分, 9. 4 公分, 11. 5 公分 各 4 支 (圖 9-1)。
- 5. 將松木圓柱中心鑽孔直徑 0.7公分,深度 3公分圓孔,並鎖入 M8 螺絲。
- 6. 在不使用工具的情況下,利用不同的圓柱高度,調整桌子的高度由 130~150 共 5 種不同的高度變化 (圖 9-2)。

圖 9-1 桌腳高度調整器

圖 9-2 桌腳高度調整器裝設位置

陸、討論

一、討論學校使用桌椅會搖動情況

學校會搖動的桌子相當多,需要補強的佔比約70%,大部分都是10年以上的桌子。我們發現使用10~25年的桌子搖動的大小與情況類似,主要為左右方向搖動,前後搖動較少。我們進一步分析,桌子搖動原因如下:

(一)使用年代較久,木工膠脫膠,雖然用L型鐵片補強也只能防止木榫分離,但是接榫有

間隙桌子搖動情況依舊。

(二)我們也找到30年前的舊桌子做比對,發現30年前舊桌子沒有搖動很大的情,比對 兩張桌子的結構,發現舊桌子桌櫃的橫桿與桌子A、B柱結合(圖14-1),結構強度 較大,新式桌子桌櫃橫桿內縮到內側與櫃子的前後桿結合(圖14-2),左右向的力量無 法支撑造成桌子左右搖動的主因。

圖 14-1 30 年前舊桌子 A、B 柱與櫃板結構

圖 14-2 現在桌子 A、B 柱與櫃板 結構

二、討論搖動的位置與結構關係

一張桌子(前方)A、B柱各5個接點,(後方)C、D柱各6個接點,合計22個接點。

- (一) C、D 柱搖動比較嚴重的位置有 C4D4、C6D6,其中 C4D4 橫桿為桌子結構中心,我們 測量 C4D4 橫桿厚度約 2.2 公分寬度約 3.0 公分,跟舊型的橫桿厚度約 3.2 公分寬度約 4.0 公分,結構上就差一倍。C6D6 為後方的結構點,桌子下方左右向最重要的支撐橫桿, 也是最容易鬆脫位置。
- (二) A、B 柱搖動比較嚴重的位置有 A4B4 橫桿位置太小,結構不符合力學原理,把原本應該在 A、B 柱的接點,往後最在櫃板柱上,形成左右力量無法支撐,又因為接榫較小且呈水平狀是需要最優先補強的位置。

三、討論桌子榫接大小與樣式

- (一) 桌子榫接樣式都是屬於抗力量較小的方榫,且長度只有 2.0 公分~2.5 公分,榫接的 後方間隙超過 0.5 公分,榫接力量嚴重不足,造成桌子搖動。
- (二)支撑左右向搖動力量為 A4B4、C4D4、C6D6 共個榫接,總體積為 35.12cm³。支撐前後方向搖動力量為 A3C3、B3D3、A5C5、B5D5 共 8 個榫接,總體積為 70.24 cm³,左右向的接榫體積比前後向足足少了一半,支撐力量不足造成左右搖動。
- (三)左右向力距長 48cm,前後向力距長 30cm,左右向力距長度大於前後向,因而造成左右搖動較大。

四、討論不同的結構補強的差異

(一)補強結構最佳的T型雙面、斜撐雙面、T型單面、木釘+白膠補強,雖然不是結構最

佳,但是桌子經過補強後,外觀與原來的桌子無明顯的差異。

- (二) T型雙面、斜撐雙面、T型單面這三種補強方式,是將支撐點往前移動 6~7公分, 讓施力臂變長,支撐的力量變大。木釘+白膠補強的強化接榫的結構,接榫往後增長 1公分,強化結構強度。
- (三)在側向拉力位移、搖動位移以T型補強減少最多補強較佳,因補強後結構強度增加 最多,在桌子變形量減少最多。最大、平均加速度以木釘+白膠,因保有原本的主 要結構,所以減少最多,最大、平均加速度補強效果較佳。
- (四)三種最佳的補強方式,在側向位移、搖動位移、最大加速度、平均加速度都可以有效的降低,差異性不大。
- (五)24小時耐用度測試後,木釘+白膠的側向拉力位移、搖動位移、最大、平均加速度 增加最少。
- (六)搖動 24 小時後,斜撐強補的斜撐接點位置、T型補強部分的螺絲接點有輕微鬆脫的 現象造成, 側向位移、搖動位移、平均加速度、最大加速度變大。

五、討論不同的木釘數量、長度、直徑對於補強的影響

- (一)我們先補強 C6D6 榫接點後,桌子結構加強,側向拉力位移、搖動位移、最大加速度、 平均加速度明顯的下降,因 C6D6 榫接點為桌子下方唯一的左右向橫桿,桌子下方強 度補強後,桌子自然搖動減小。
- (二)補強 A4B4、C4D4,整體結構更強,在側向拉力位移、搖動位移、最大加速度、平均加速度的下降效能趨勢。
- (三)振動越大時,外部的力量越大,桌子的搖動位移、最大加速度、平均加速度也越大。
- (四)有補強的桌子側向位移比無補強減少,經過補強後結構強度增加,側向位移量減少。
- (五)有補強可提升桌子的結構強度,對於外部的搖動力量變大時,可以有效將降低側向 位移、搖動位移。
- (六)木釘越長時,桌子的結構強度越大,外部的力量側施力使,在桌子向拉力位移、搖動位移、最大、平均加速度,降低效果較佳。
- (七)木釘長度 60mm 與 80mm,在側向拉力位移、搖動位移、最大、平均加速度,並無明顯的差異,桌子木桿的厚度 3 公分,木釘長度 60m,超過接榫長度的 2 倍已達到最佳接榫的長度,所以 80mm 木釘補強效果與木釘長度 60m 相近。
- (八)木釘直徑越大,接榫體積越大,結構越強所以側向拉力位移、搖動位移、最大加速 度與平均加速度,有越小的的趨勢。
- (九)我們用的 12mm 木釘直徑已經大於接榫 10mm,接榫的長度、體積增加,結構度增加。 六、討論自製木補強學校桌子補強效果

- (一) 市售的木釘最大到直徑 12mm, 我們自己做到直徑 15mm,將木釘後方用棉線纏繞直徑 12mm 纏繞到直徑 15mm,直徑 15mm 纏繞到 18mm,就像鐵釘頭一樣,以防止接榫脫離並增強接榫結構。
- (二)實驗結果發現簡單增大木釘後方直徑,可以增強接榫強度。
- (三)利用我們自製的木釘做桌子的結構補強,補強後的桌子在側向位移、搖動位移、 最大加速度、平均加速度實驗數據,與不會搖動的桌子相近。
- (四)木釘工法可以將舊的桌子補強到,不會搖動的桌子相近,但是補強的時間大約是螺 絲側向補強的3倍,螺絲側向補強完後,因為接榫的間隙還是存在,桌子只是不會 搖動,經過一段時間後,桌子搖動越大。
- (五)木釘工法將接榫變大變長、木工膠重新接合,對於桌子的補強效果最佳。

七、討論改變桌子的結構

- (一) 桌子有嚴重結構上的問題,最嚴重桌子 A、B 柱結構不符合力學原理,原本應該在 A、B 柱的接點,往後接在櫃板柱,形成左右力量無法支撐,接榫較小且呈水平狀。
- (二) C4D4 横桿太小了,要支撐左右的力量,要支撐櫃板、後方立板的力量,無論如何補強,在桌子前側(A、B柱)位置左右用力搖動,桌子就搖動很大。
- (三) 另外桌子的櫃子為何這麼小,我們放個書本都要橫放。
- (四) 我們依據現有桌子的缺失,進行設計翻修。
 - 1. 增強櫃板的功能:將櫃板利用 1. 8cm 的木心板強化櫃板的支撐力,櫃子內部可以承重,將櫃板延伸到 A、B 柱與 A、B 柱連結,強化左右向的結構,並加大櫃子的使用空間。
 - 2. 利斜撐支撐:利用斜撐寬度 6cm,在 A、B 柱與櫃板下方位置做斜撐補強,強化左右 向的結構,降低左右向的搖動。
 - 3. 強化後方背板功能:在後櫃板拆除,改為1.8cm 木心板,將桌板、C柱、D柱、櫃柱四個位置結合在一起形成完整的結構。
 - 4. 加裝櫃子側板:加強前後結構,並防止東西掉落。
 - 5. 加裝桌腳小櫃:加強前後桌腳結構強度,並可以放置書本與小物。
- 八、新舊桌子的問卷調查,發現舊桌子明顯會搖動,且置物空間明顯不足的現象,經過我們的改造,重新補強設計後的桌子,不會搖動,對於置物空間,可以提供更大放置學用品,使學習效果與方便性更佳。
- 九、我們將原有桌子 13 型,整合為 3 型,製造單純化,降低製作成本,降低備用的桌子, 減少儲存的空間,增加桌椅的使用率。

柒、結論

一、學校使用課桌椅會搖動情況

以學校 140~160 型桌子共 87 張進行實驗,,會搖動的約佔 70%,這些桌子都需要做補強,桌子搖動會影響上課的學習。

二、搖動的位置與結構關係

支撐桌子左右向接榫共6個,總體積為35.12cm³;前後向榫接共8個,總體積為70.24cm³。因為左右向榫接,體積太小,結構較差,所以桌子左右向容易搖動。搖動最嚴重的位置為後柱桌腳左右接榫,後櫃板左右接榫,前櫃板左右接榫。

三、不同的結構補強抗剪力與抗震動差異

補強結構以側面T型為最佳補強方式,但有部分的接榫位置無法施作T型結構,成本也較高,補強後不美觀。我們使用木釘補強,補強後外觀看不出來補強前後的差異。

四、木釘補強最佳方式

利用自製木釘做桌子的結構補強,補強後的桌子在側向位移、搖動位移、平均與最大加速度均有減少。側向拉力位移降低77.64%、搖動位移降低32.43%,平均加速降低46.01%,最大加速度降低21.49%,補強效果良好。

五、重新設計與改良

學校桌子有嚴重結構問題,A、B 柱結構不符合力學原理,把原本應該在 A、B 柱的接榫往後設在櫃板柱上,形成左右力量無法支撐。加上接榫較小且呈水平狀,成為是整張桌子結構最弱的地方。本研究利用斜撐支撐、增加後方背板厚度、加裝櫃子側板、加裝桌腳小櫃等方式,重新設計桌子。組裝後桌子結構強度強化,使側向拉力位移降低 82.31%、搖動位移降低 41.28%,我們進一步依據學生使用的習慣與方便性,增大櫃子的體積方便放置書本與物品,並加裝桌腳小櫃可放置書本與小物,置物空間增加 129%。

六、實際應用

我們預計製作 30 張經過重新設計與改良的桌子,提供給學生使用,2 星期後進行滿意度調查,滿意度為 98.6 分。學生高度滿意我們設計改良的的桌子。希望我們設計改良的桌子能讓相關單位重視,舊的桌子經重新設計改良後,可以在用 20 年,降低木材的使用,減少生物資源的浪費。

捌、參考文獻

- 一、木材硬度表及常見木材特徵表。取自 https://read01.com/zh-tw/M2Bmm4B.html。
- 二、木材硬度表。https://woodmall.com.tw/
- 三、木材膠合時如何利用膠合結構的破壞形式來調整膠合操作條件,(國家林產技術平台)。 取自 https://www.cwcba-wqac.org.tw/
- 四、太棒膠 II 與太棒膠 III 差異 (木百貨)。取自 https://woodmall.com.tw/shop/。
- 五、陳立中(2016)。膠合劑應用在木材膠合剪力之探討。碩士樹德科技大學。
- 六、強力接著劑 NP-3761、NP3760、300。取自 https://www.nanpao.com.tw/。
- 七、**剪力 (Shear Force)**。中文百科。取自 https://www.jendow.com.tw/。
- 八、楊淑惠(1989)。木**釘、方榫、橢圓榫接合之強度性質**。碩士學術論文,國立臺灣大學。
- 九、李佳韋(2007)。中國傳統建築直榫木接頭力學行為研究。碩士學術論文,國立臺灣大學。
- 十、林靜宜(1994)。台中市國民小學新型式課桌椅認知之調查研究。國立中興大學,學術論文。