組 別:海山國小自然類組

作品名稱:泔水華麗轉身-廚餘電池新可能初探

關 鍵 詞:綠能電源、廚餘電池、永續能源

編號:

摘要

本研究運用水果與蔬菜、廚餘電池發電,探討pH值、電極尺寸、金屬材料與增稠劑對發電效能的影響,並評估其應用潛力。結果顯示,酸性環境(pH 2.7~3.4)可提升電子釋放與發電效率。電極測試發現,5×2cm(0.3mm厚)最適用於水果廚餘,5×3cm(0.3mm厚)最適用於蔬菜廚餘,提供最佳電子傳導效果。金屬組合方面,鎳-鎂組合創下最高電功率(37.93mW),遠優於傳統銅-鋅電極,展現高效能與應用價值。此外,2g 玉米糖膠可進一步提升電導率,優化發電表現。當電功率達12.83mW時,LED燈成功點亮,顯示本技術具備實用價值。研究結果驗證了廚餘可轉換為穩定的綠能電源,為生物燃料電池與環境永續能源技術提供全新方向。

壹、前言

學校的營養午餐經常剩下許多未被食用的水果,而菜市場也存在大量滯銷的蔬菜與水果。這些資源是否只能作為廢棄物處理?是否有其他更有效的利用方式?基於這樣的疑問,我們深入查閱了與廚餘再利用相關的文獻資料,並探討了多種可能性。最終,我們選擇以廚餘電池發電作為解決方案。這種方式不僅具備高度的環保價值,還能降低對環境的負面影響,與現行依賴傳統電池的方式相比,更具永續發展的意義。

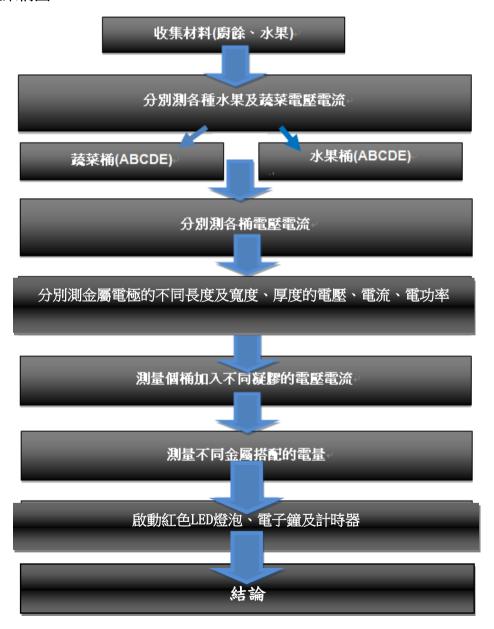
貳、 研究目的

- 一、確定蔬菜水果單一材料或混合材料中,哪一種能產生最高的電壓和電流。
- 二、找出廚餘在不同分解時間內的最佳發電期間。
- 三、探討電極金屬不同寬度、長度及厚度對廚餘電池發電量的影響。
- 四、探討添加食用級增稠劑材料對廚餘電池發電量的影響。
- 五、找出能最大化廚餘電池效能的電極金屬組合。
- 六、評估水果廚餘和蔬菜廚餘電池能啟動計時器和電子鐘及紅色LED燈及發亮時間。

参、研究設備及器材

一、研究設備及材料

1.水果:番茄、蘋果、檸檬、葡萄柚、百香果、芭樂。


2.蔬菜:白蘿蔔、馬鈴薯、大白菜、胡瓜、青江菜、高麗菜、空心菜。

- 3.食用級增稠劑材料:關華豆膠、多丙烯酸鈉、羧甲基纖維素鈉、海藻酸鈉、玉米糖膠。 4.設備:pH值檢測器、電子秤、量杯、燒杯、電動攪拌棒、網狀過篩漏斗、三用電表、
- 鱷魚夾、100ml果凍杯、計時器、電子鐘、紅色LED燈泡。

肆、 研究過程或方法

一、研究架構圖

二、研究過程:

- 收集各班營養午餐吃剩或不吃的水果,至市場收集剪下或丟棄的蔬菜葉及蔬菜,到學校菜園採摘空心菜。
- 2. 將各種蔬菜及水果分別打成汁。
- 3. 測試準備裝罐廚餘單一材料(如單顆蘋果汁或番茄汁及各種蔬菜汁),使用長5cm 寬 2cm 厚度0.3mm的鋅片(-)銅片(+)每次測試容量100ml,每次測試時間30秒,每種測3次取 平均值(無條件捨去法取小數第二位)。比較不同種類蔬果的發電效能及pH值。

圖4-1 蔬菜廚餘桶及水果廚餘桶製作流程圖

圖4-2 蔬菜廚餘桶及水果廚餘桶測試電流、電壓及PH值流程圖

表4-1 各類蔬菜汁pH值、電壓、電流統計表

蔬菜汁(100m1)	pH值	電壓(V)	電流(MA)	電功率
1. 白蘿蔔汁	5. 44	① 0.82 ② 0.84 ③ 0.86	① 0.45 ② 0.40 ③ 0.42	0. 84x0. 42
平均		0.84	0. 42	0.35
2. 馬鈴薯汁	6. 03	① 0.89 ② 0.82 ③ 0.85	① 0.76 ② 0.70 ③ 0.45	0. 85x0. 64
平均		0. 85	0.64	0. 54
3. 大白菜汁	6. 05	① 0.75 ② 0.72 ③ 0.73	① 0.07 ② 0.09 ③ 0.08	0. 73x0. 08
平均		0.73	0.08	0.06
4. 胡瓜汁	5. 24	① 0.89 ② 0.90 ③ 0.90	① 0.42 ② 0.42 ③ 0.43	0. 90x0. 43
平均		0. 90	0. 43	0.39
5. 青江菜汁	5. 65	① 0.73 ② 0.71 ③ 0.70	① 0.11 ② 0.08 ③ 0.10	0. 71x0. 10
平均		0. 71	0. 10	0. 07
6. 高麗菜汁	6. 14	① 0.65 ② 0.65 ③ 0.67	① 0.21 ② 0.21 ③ 0.13	0. 66x0. 18
平均		0. 66	0. 18	0. 12
7. 空心菜汁	5. 89	① 0.90 ② 0.90 ③ 0.92	① 0.70 ② 0.58 ③ 0.53	0. 91x0. 60
平均		0. 91	0.60	0. 54

表4-2 各類水果pH值、電壓、電流統計表

水果汁	pH值	電壓(V)	電流(MA)	電功率
芭樂汁	4. 75	① 0.96 ② 0.93 ③ 0.93	4 0.885 0.976 0.86	0. 94x0. 90
平均		0. 94	0.90	0.85
蘋果汁	3. 86	4 1.045 1.036 1.02	④ 0.80⑤ 0.76⑥ 0.74	1. 03x0. 77
平均		1.03	0.77	0.79
番茄汁	4. 72	① 0.89 ② 0.89 ③ 0.87	① 1.26 ② 1.19 ⑦ 1.21	0.88x1.22
平均		0.88	1. 22	1. 07
百香果汁	2. 83	① 0.86 ② 0.87 ③ 0.88	4 0. 735 0. 856 0. 79	0. 87x0. 79
平均		0.87	0. 79	0.69
葡萄柚汁	2. 95	① 0.90 ② 0.90 ③ 0.90	4 1.045 1.056 1.10	0. 90x1. 06
平均		0.90	1.06	0. 95
檸檬汁	2. 15	① 0.97 ② 0.96 ③ 0.94	① 2.12 ② 2.03 ⑦ 1.96	0. 96x2. 04
平均		0.96	2. 04	1. 96

- (1)蔬菜選項電壓最高空心菜汁,電流最大馬鈴薯汁,電功率最大空心菜汁和馬鈴薯汁。
- (2)水果選項電壓最高蘋果汁,電流最大檸檬汁,電功率最大檸檬汁。

4. 為探討廚餘發電的影響因素,本研究將蔬菜與水果分組, **為了不浪費,我們將收集的蔬果盡可能的平均分配至各罐中,**使每桶的內容物保持相同。

然後我們加入鹽巴原因是: (1)因為廚餘會發臭,讓它脫水,體積變小,抑制臭味。(2)我們實驗是使用生廚餘,但是如果推廣到熟廚餘,經過烹煮的食物會加入鹽巴、味精、醋等調味料,加鹽會更接近菜餚實際情況。(3)在五年級自然課我們學過電解質,知道鹽水具有導電性,所以會提高發電量,因此我們假設不同鹽濃度會影響發電效能,我們於 B、C、D、E桶 分別加入 20g、40g、60g、80g鹽,A桶作為對照組(無鹽),以觀察其影響。接著,透過定期測量電壓與電流,分析不同鹽濃度對發電量的影響,以找出最佳發電條件。

※使用長10cm、寬1cm、厚度0.3mm的鋅片(-)銅片(+)每次測試容量100ml,每次測試時間30秒,每種測3次取平均值(無條件捨去法取小數第二位)。比較ABCDE蔬菜及水果廚餘桶的發電效能及pH值。

操縱變因	控制變因	應變變因	
水果廚餘桶ABCDE五桶(BCDE	1.10cm 寬1cm 厚度0.3mm的鋅	水果廚餘桶ABCDE五桶	
加入20 40 60 80g鹽)	片(-)銅片(+)	蔬菜廚餘桶ABCDE五桶	
蔬菜廚餘桶ABCDE五桶(BCDE	2. 每次測試容量100ml	產生不同電壓、電流、電功率	
加入20 40 60 80g鹽)	3. 每次測試時間30秒(共測3		
	次)		

A.B.C.D.E桶內容物

水果桶:芭樂泥汁656G、檸檬汁泥335G、蘋果泥汁637G、番茄泥汁300G、百香果泥200G、葡萄柚泥423G(共2551G)

蔬菜桶:白蘿蔔汁413G、大白菜汁367G、馬鈴薯汁387G、胡瓜汁478G、青江菜汁368G、 高麗菜汁347G、空心菜汁145G(共2505G)

將蔬菜類及水果類廚餘每隔大約2星期測一次電量,容量100ml,每次測試時間30秒,每杯都會測3次取平均值

表4-3 ABCDE水果廚餘桶第一次測試pH值、電壓、電流統計表

水果桶(113.08.07)	pH值	電壓(V)	電流(mA)	電功率
A桶	3.28	1.0220.97	11.1521.22	
		③0.92	31.22	1.16
B桶	3.04	①0.82②0.79	①2.20②2.38	
含鹽量20g		③0.81	③2.08	1.77
c桶	2.96	①0.82②0.81	①2.53②2.38	
含鹽量40g		③0.82	32.35	1.96
D桶	2.85	①0.77②0.80	①2.98②2.91	
含鹽量60g		③0.76	32.85	2.26
E桶	2.81	①0.82②0.80	①4.07②4.02	
含鹽量80g		③0.79	34.05	3.24

表4-4 第一次測試水果廚餘桶平均值數據分析表

桶號	pH 值	電壓 (V)	電流 (mA)	電功率 ™₩	含鹽量	含鹽濃度 (%)
A 桶	3.28	0.97	1.20	1.16	無	0
B 桶	3.04	0.80	2.22	1.77	20 g	0.71%
C桶	2.96	0.81	2.42	1.96	40 g	1.39%
D 桶	2.85	0.78	2.91	2.26	60 g	2.07%
E桶	2.81	0.80	4.05	3.24	80 g	2.74%

※實驗結果數據分析:第一次測試顯示A桶(沒加鹽)的電壓最高,E桶電流及電功率最大。隨著鹽量增加,pH值逐漸下降(從A桶的3.28 降到E桶的2.81)。

表4-5 ABCDE水果廚餘桶第二次測試pH值、電壓、電流統計表

水果桶(113.09.21)	pH值	電壓(V)	電流(mA)	電功率
A桶	3.27	10.9720.92	①1.21②1.12	
		③0.93	③1.10	1.07
B桶	3.03	①0.87②0.83	①1.90②1.89	
含鹽量20g		③0.85	③1.79	1.58
c桶	2.97	①0.81②0.80	①2.17②2.18	
含鹽量40g		③0.79	③2.23	1.75
D桶	2.91	①0.76②0.79	①2.82②2.91	
含鹽量60g		③0.79	③2.80	2.22
E桶	2.91	①0.82②0.83	①3.52②3.51	
含鹽量80g		③0.84	③3.50	2.92

表4-6 第二次測試水果廚餘桶平均值數據分析表

桶號	pH 值	電壓 (V)	電流 (mA)	電功率□₩	含鹽量	含鹽濃度 (%)
A 桶	3.27	0.94	1.14	1.07	無	0
B 桶	3.03	0.85	1.86	1.58	20 g	0.71%
C 桶	2.97	0.80	2.19	1.75	40 g	1.40%
D桶	2.91	0.78	2.84	2.22	60 g	3.21%
E桶	2.91	0.83	3.52	2.92	80 g	2.76%

※實驗結果顯示:第二次測試顯示A桶(沒加鹽)的電壓最高,E桶電流及電功率最大。電流隨鹽濃度增加而顯著提升,從A桶的1.14 mA增加到E桶的3.52 mA。

表4-7 ABCDE水果廚餘桶第三次測試pH值、電壓、電流統計表

水果桶(113.10.12)	pH值	電壓(v)	電流(mA)	電功率
A桶	3.31	①0.93②0.91	11.0621.33	
		③0.90	③1.26	1.11
B桶	3.11	①0.83②0.87	12.4322.32	
含鹽量20g		③0.87	③2.51	2.08
c桶	3.04	①0.84②0.83	12.8323.03	
含鹽量40g		③0.83	③2.74	2.38
D桶	2.99	①0.79②0.83	①3.40②3.41	
含鹽量60g		③0.84	③3.31	2.76
E桶	2.97	①0.82②0.81	①3.50②3.72	
含鹽量80g		③0.82	③3.66	2.98

表4-8 第三次測試水果廚餘桶平均值數據分析表

桶號	pH 值	電壓 (V)	電流 (mA)	電功率mW	含鹽量	含鹽濃度 (%)
A 桶	3.31	0.91	1.22	1.11	無	0
B 桶	3.11	0.86	2.42	2.08	20 g	0.72%
C桶	3.04	0.83	2.87	2.38	40 g	1.41%
D 桶	2.99	0.82	3.37	2.76	60 g	3.23%
E桶	2.97	0.82	3.63	2.98	80 g	2.78%

※實驗結果顯示:第三次測試顯示A桶(沒加鹽)的電壓最高,E桶電流及電功率最大。在2.78% 鹽濃度(80g鹽下,導電性能最優,電功率達到最高值 2.98 W

表4-9 ABCDE水果廚餘桶第4次測試pH值、電壓、電流統計表

水果桶(113.11.09)	pH值	電壓(V)	電流(mA)	電功率
A桶	3.33	①0.94②0.94	11.6223.90	
		③0.93	③2.09	2.39
B桶	3.11	①0.85②0.88	12.8822.85	
含鹽量20g		③0.86	③2.60	2.39
c桶	3.04	①0.84②0.84	①3.39②3.45	
含鹽量40g		③0.85	③3.32	2.85
D桶	2.98	①0.87②0.85	①4.22②3.79	
含鹽量60g		③0.84	③3.61	3.29
E桶	2.97	①0.81②0.81	①4.72②4.13	
含鹽量80g		③0.81	③4.21	3.52

表4-10 第四次測試水果廚餘桶平均值數據分析表

桶號	pH 值	電壓 (V)	電流 (mA)	電功率mW	含鹽量	含鹽濃度 (%)
A 桶	3.33	0.94	2.54	2.39	無	0
B 桶	3.11	0.86	2.78	2.39	20 g	0.72%
C桶	3.04	0.84	3.39	2.85	40 g	1.42%
D桶	2.98	0.85	3.87	3.29	60 g	3.19%
E桶	2.97	0.81	4.35	3.52	80 g	2.79%

※實驗結果顯示:第四次測試顯示A桶(沒加鹽)的電壓最高,E桶電流及電功率最大。電壓隨鹽濃度增加略微下降,範圍從0.94V減少到0.81V。這表明鹽濃度的提升對電壓的影響較小。

表4-11 ABCDE水果廚餘桶第5次測試pH值、電壓、電流統計表

水果桶(113.12.08)	pH值	電壓(v)	電流(mA)	電功率
A桶	3.08	10.9120.91	11.7221.72	
		③0.92	③1.71	1.57
B桶	2.89	10.8420.86	①1.75②1.62	
含鹽量20g		③0.87	③1.59	1.41
c桶	2.86	10.8420.86	①2.29②2.19	
含鹽量40g		③0.88	③2.29	1.94
D桶	2.77	10.8720.87	12.8722.94	
含鹽量60g		③0.86	③2.56	2.43
E桶	2.70	10.7720.82	①3.12②3.35	
含鹽量80g		③0.83	③3.35	2.65

表4-12第五次測試水果廚餘桶平均值數據分析表

桶號	pH 值	電壓 (V)	電流 (mA)	電功率	含鹽量	含鹽濃度 (%)
A 桶	3.08	0.91	1.72	1.57	無	0
B 桶	2.89	0.86	1.65	1.41	20 g	0.72%
C 桶	2.86	0.86	2.26	1.94	40 g	1.42%
D桶	2.77	0.87	2.79	2.43	60 g	3.23%
E桶	2.70	0.81	3.27	2.65	80 g	2.78%

※實驗結果顯示:(1)第五次測試顯示A桶(沒加鹽)的電壓最高,E桶電流及電功率依然最大。 但是從數據可以看出發電量明顯比表4-10下降。

(2)鹽濃度增加時,溶液的pH值降低,從A桶的3.08降至E桶的2.70。加入更多的鹽會改變溶液中的酸鹼平衡,略微提高酸性。

表4-13 ABCDE蔬菜廚餘桶第1次測試pH值、電壓、電流統計表

蔬菜桶(113.09.21)	pH值	電壓(V)	電流(mA)	電功率
A桶	5.04	10.8720.91	①1.15②1.04	
		③0.89	③0.94	0.93
B桶	3.27	10.8420.85	①2.61②2.47	
含鹽量20g		③0.85	③2.45	2.13
C桶	3.15	10.8020.82	11.9122.37	
含鹽量40g		③0.81	③2.39	1.80
D桶	3.12	10.8020.80	①2.65②2.77	
含鹽量60g		③0.82	③2.04	2.02
E桶	3.15	10.7920.80	①2.67②2.94	
含鹽量80g		③0.80	③2.84	2.26

表4-14 第一次測試蔬菜廚餘桶平均值數據分析表

桶號	pH 值	電壓 (V)	電流 (mA)	電功率(mW	含鹽量	含鹽濃度 (%)
A 桶	5.04	0.89	1.04	0.93	無	0
B 桶	3.27	0.85	2.51	2.13	20 g	0.59%
C桶	3.15	0.81	2.22	1.80	40 g	1.37%
D桶	3.12	0.81	2.49	2.02	60 g	2.07%
E桶	3.15	0.80	2.82	2.26	80 g	2.70%

※實驗結果顯示:第一次測試顯示A桶(沒加鹽)的電壓最高,E桶電流及電功率最大。

表4-15 ABCDE蔬菜廚餘桶第2次測試pH值、電壓、電流統計表

蔬菜桶(113.10.12)	pH值	電壓(V)	電流(mA)	電功率
A桶	5.05	①0.83②0.83	11.5321.46	
		③0.84	③1.29	1.18
B桶	3.52	①0.88②0.84	①2.28②2.36	
含鹽量20g		③0.85	③2.52	2.05
c桶	3.24	①0.84②0.84	12.7822.87	
含鹽量40g		③0.85	③2.76	2.35
D桶	3.17	①0.83②0.82	①3.26②3.14	
含鹽量60g		③0.84	③2.99	2.59
E桶	3.18	①0.79②0.82	①2.60②2.65	
含鹽量80g		③0.82	③2.64	2.13

表4-16 第二次測試蔬菜廚餘桶平均值數據分析表

桶號	pH 值	電壓 (V)	電流 (mA)	電功率mW	含鹽量	含鹽濃度 (%)
A 桶	5.05	0.83	1.43	1.18	無	0
B 桶	3.52	0.86	2.39	2.05	20 g	0.59%
C桶	3.24	0.84	2.80	2.35	40 g	1.38%
D 桶	3.17	0.83	3.13	2.59	60 g	2.08%
E桶	3.18	0.81	2.63	2.13	80 g	2.70%

※實驗結果顯示:第二次測試顯示A桶(沒加鹽)的電壓最高,D桶電流及電功率最大。

表4-17 ABCDE蔬菜廚餘桶第3次測試pH值、電壓、電流統計表

蔬菜桶(113.11.09)	pH值	電壓(V)	電流(mA)	電功率
A桶	4.72	10.9420.95	11.0921.09	
		③0.93	③1.07	1.02
B桶	3.65	10.8420.86	11.9022.02	
含鹽量20g		③0.86	③1.70	1.59
c桶	3.25	10.8520.86	12.5422.61	
含鹽量40g		③0.86	③2.70	2.25
D桶	3.20	10.8620.86	①3.42②3.22	
含鹽量60g		③0.85	③3.01	2.77
E桶	3.18	10.8320.83	①3.98②3.58	
含鹽量80g		③0.84	③4.30	3.28

表4-18 第三次測試蔬菜廚餘桶平均值數據分析表

桶號	pH 值	電壓 (V)	電流 (mA)	電功率 血₩	含鹽量	含鹽濃度 (%)
A 桶	4.72	0.94	1.08	1.02	無	0
B 桶	3.65	0.85	1.87	1.59	20 g	0.60%
C 桶	3.25	0.86	2.62	2.25	40 g	1.38%
D桶	3.20	0.86	3.22	2.77	60 g	2.08%
E 桶	3.18	0.83	3.95	3.28	80 g	2.70%

※實驗結果顯示:第三次測試顯示A桶(沒加鹽)的電壓最高,E桶電流及電功率最大。

表4-19 ABCDE蔬菜廚餘桶第4次測試pH值、電壓、電流統計表

蔬菜桶(113.12.07)	pH值	電壓(V)	電流(mA)	電功率
A桶	5.36	10.8520.86	11.3421.48	
		③0.88	③1.52	1.23
B桶	5.53	10.5720.62	11.1920.92	
含鹽量20g		③0.68	③0.88	0.61
c桶	5.13	10.7820.77	14.7224.46	
含鹽量40g		③0.78	③3.97	3.37
D桶	3.11	10.7520.78	13.9824.38	
含鹽量60g		③0.78	③3.90	3.14
E桶	2.98	10.8020.77	14.6824.69	
含鹽量80g		③0.78	③4.30	3.54

表4-20 第四次測試蔬菜廚餘桶平均值數據分析表

桶號	pH 值	電壓 (V)	電流 (mA)	電功率 (mW)	含鹽量	含鹽濃度 (%)
A 桶	5.36	0.86	1.44	1.23	無	0
B 桶	5.53	0.62	0.99	0.61	20 g	0.60%
C桶	5.13	0.77	4.38	3.37	40 g	1.38%
D桶	3.11	0.77	4.08	3.14	60 g	2.08%
E桶	2.98	0.78	4.55	3.54	80 g	2.70%

※實驗結果顯示:第四次測試顯示A桶(沒加鹽)的電壓最高,E桶電流及電功率最大。

表4-21 ABCDE蔬菜廚餘桶第5次測試pH值、電壓、電流統計表

蔬菜桶(114.01.08)	pH值	電壓(V)	電流(mA)	電功率
A桶	5.08	①0.80②0.82	1.5121.17	
		③0.82	③1.20	1.03
B桶	4.66	①0.68②0.70	①1.22②1.03	
含鹽量20g		③0.71	③1.25	0.80
c桶	3.28	①0.83②0.83	①2.99②2.90	
含鹽量40g		③0.83	32.94	2.44
D桶	3.00	10.7420.74	①3.36②2.52	
含鹽量60g		③0.74	③2.23	1.99
E桶	2.93	①0.77②0.72	①4.14②4.12	
含鹽量80g		③0.72	③3.92	2.96

表4-22第五次測試蔬菜廚餘桶平均值數據分析表

桶號	pH 值	電壓 (V)	電流 (mA)	電功率(⋒₩	含鹽量	含鹽濃度 (%)
A 桶	5.08	0.80	1.29	1.03	無	0
B 桶	4.66	0.69	1.16	0.80	20 g	0.60%
C 桶	3.28	0.83	2.94	2.44	40 g	1.38%
D桶	3.00	0.74	2.70	1.99	60 g	2.08%
E 桶	2.93	0.73	4.06	2.96	80 g	2.70%

※實驗結果顯示:第五次測試顯示C桶的電壓最高,E桶電流及電功率最大。各大桶跟表4-19 比起來明顯變酸,且電壓及電流和電功率都明顯減少。

5.測試電極金屬物長度、寬度、厚度對發電量的影響。(鋅片及銅片10x1cm、5x2cm、5x3cm 厚度分別為0.3mm、1.0mm)探討不同電極尺寸(長度、寬度、厚度)對於水果與蔬菜廚餘發電效果的影響,我們記錄了各組條件下的電壓(V)、電流(mA)和電功率(mW),並進行統計分析。

表4-23 水果廚餘E桶電極金屬物長度、寬度、厚度電壓、電流統計表

銅片-鋅片尺寸	pH值	電壓 (V)	電流 (mA)	電功率 (V×mA)
長10X寬1CM 厚0.3MM	3.42	①0.85 ②0.84 ③0.82	①2.85 ②2.69 ③2.69	0.83×2.74
平均		0.83	2.74	2.27
長5X寬2CM 厚0.3MM	3.42	10.74 20.74 30.74	①4.90 ②4.56 ③3.62	0.74×4.60
平均		0.74	4.60	3.40 🙂
長5X寬3CM 厚0.3MM	3.42	①0.82 ②0.76 ③0.74	①3.37 ②3.16 ③3.62	0.77×3.38
平均		0.77	3.38	2.60
長5X寬2CM 厚1.0MM	3.42	①0.82 ②0.77 ③0.74	①2.85 ②3.04 ③3.05	0.77×2.98
平均		0.77	2.98	2.29

- (1)長 $5 \times$ 寬2 cm,厚0.3 mm 的電極組合,產生最高電流 (4.60mA) 和最高電功率 (3.40mW),顯示該尺寸的電極較適合於水果廚餘的發電環境。
- (2)當寬度增加到 3cm (長 $5 \times$ 寬 $3 \times$ 厚 0.3mm) 時,電壓略升,但電流下降,顯示此組合可能降低了電子流動的效率。
- (3)厚度增加至 1.0mm(長5× 寬2× 厚1.0mm)後,發電量下降,可能是因為較厚的電極表面反應效率降低,影響了電子釋放速率。

表4-24 蔬菜廚餘E桶電極金屬物長度、寬度、厚度電壓、電流統計表

銅片/鋅片尺寸	pH 值	電壓 (V)	電流 (mA)	電功率 (mW)
$10cm \times 1cm \times 0.3mm$	3.43	① 0.82 ② 0.80 ③ 0.80	① 2.10 ② 2.02 ③ 1.91	0.80 × 2.74 = 1.60
平均值		0.80V 😊	2.74mA	1.60mW
5cm × 2cm × 0.3mm	3.43	① 0.75 ② 0.76 ③ 0.77	① 3.90 ② 4.00 ③ 3.92	0.76 × 3.94 = 2.99
平均值		0.76V	3.94mA 🙂	2.99mW
5cm × 3cm × 0.3mm	3.43	① 0.80 ② 0.79 ③ 0.79	① 4.20 ② 3.81 ③ 3.44	0.79 × 3.81 = 3.00
平均值		0.79V	3.81mA	3.00mW 🙂
5cm × 2cm × 1.0mm	3.43	① 0.78 ② 0.79 ③ 0.78	① 3.06 ② 3.14 ③ 2.67	0.78 × 2.95 = 2.30
平均值		0.78V	2.95mA	2.30mW

※實驗結果顯示:

- (1)長 $5 \times$ 寬3 cm,厚0.3 mm 的電極組合,在蔬菜廚餘環境中產生最高的電功率 (3.00mW),顯示此尺寸的電極較適合。
- (2)長 $5 \times$ 寬 2 cm,厚 0.3 mm 的電極組合則產生最高電流 (3.94 mA),顯示適中的寬度有助於維持電流輸出穩定。
- (3)厚度增加到 1.0mm(長5cm× 寬2cm× 厚1.0mm)後,電流與功率下降,與水果廚餘環境的結果相似,顯示較厚的電極在廚餘發電中可能不利於電子釋放。

從表4-23~4-24顯示長5cm× 寬2cm× 厚0.3mm 的電極電流較高,顯示該尺寸的電極較適合不 同類型的廚餘發電。以下實驗皆以此尺寸。

6. 測試不同金屬(銅、鋅、鋁、鎂、鐵、鎳)作為水果或蔬菜廚餘電池的正負極,分析其電壓和電流輸出,確定最佳組合。(金屬寬2cm 長5cm 厚度0.3mm。A桶廚餘100ml,電極深度固定為3cm,距離6cm)

表4-25 水果廚餘A桶搭配不同電極金屬數據表

正	負	рН	電壓(V)	電流(mA)	電功率
銅	鎂	3.40	①1.76	①9.46	1.73x9.38
			21.72	29.24	
			③1.72	39.45	
平	均		<mark>1.73</mark>	9.38	16.22
銅	鋁	2.84	①0.57	①0.84	0.52x0.69
			20.55	20.72	
			③0.45	30.51	
平	均		0.52	0.69	0.35
銅	鋅	2.92	①0.95	1.88	0.91x1.62
			②0.90	21.61	
			③0.90	③1.38	
平;	均		0.91	1.62	1.47
鐵	鎂	2.96	1.29	18.82	1.28x8.74
			②1.27	②8.61	
			③1.28	③8.79	
平	均		1.28	8.74	11.18

鎳	鎂	2.93	1.56	①10.36	10.67x1.55
			21.65	211.33	
			③1.46	③10.32	
平	均		1.55	<mark>10.67</mark>	<mark>16.53</mark>
銅	鐵	2.84	①0.45	①0.33	0.46x0.32
			②0.43	20.36	
			③0.51	30.29	
平	均		0.46	0.32	0.14
鎳	鋁	2.85	①0.57	①0.31	0.60x0.26
			②0.62	20.27	
			③0.62	30.21	
平	均		0.60	0.26	0.15

- (1)電極金屬銅(正極)鎂(負極)的組合電壓最大,鎳(正極)鎂(負極)的組合電流及電功率最大, pH值都偏酸,鎂在實驗過程中氧化明顯(一直冒泡泡)。
- (2) 鎂成本較高且易氧化。後面的實驗還是使用教學最常使用的銅鋅組合。

表4-26 蔬菜廚餘A桶搭配不同電極金屬數據表

正	負	рН	電壓(V)	電流(mA)	電功率
銅	鎂	4.49	1.67	119.32	1.66x20.15
			21.67	219.35	
			③1.66	③21.80	
平	均		<mark>1.66</mark>	20.15	33.44
銅	鋁	4.86	①0.53	10.89	0.52x0.85
			20.54	20.83	
			③0.50	③0.83	
平	均		0.52	0.85	0.44
銅	鋅	4.86	①0.90	①0.79	0.89x0.81
			20.89	20.75	
			③0.90	③0.89	
平	均		0.89	0.81	0.72
鐵	鎂	4.92	①1.23	①13.00	1.22x11.53
			②1.23	②12.90	
			③1.22	38.70	
平	均		1.22	11.53	14.06

鎳	鎂	4.84	①1.62	①21.50	1.64x23.13
			21.65	223.40	
			③1.66	③24.50	
平	均		1.64	<mark>23.13</mark>	<mark>37.93</mark>
銅	鐵	4.83	①0.40	①0.38	0.38x0.34
			②0.38	20.35	
			③0.36	③0.30	
平	均		0.38	0.34	0.12
鎳	鋁	4.84	①0.52	①0.48	0.54x0.47
			②0.53	20.47	
			③0.57	30.46	
平	均		0.54	0.47	0.25

- (1)電極金屬銅(正極)鎂(負極)的組合電壓最大,鎳(正極)鎂(負極)的組合電流及電功率最大,PH值都偏弱酸,鎂在實驗過程中氧化就比較緩和,沒有明顯冒泡。
- (2) 鎂成本較高且易氧化。後面的實驗還是使用教學最常使用的銅鋅組合。
- 7.不同食用級增稠劑材料,測量電壓和電流的變化,確定最佳添加劑及其濃度。(金屬寬2cm 長5cm 厚度0.3mm。水100ml+5種食用級增稠劑各1G 2G 3G,電極深度固定為4cm,距離6cm)

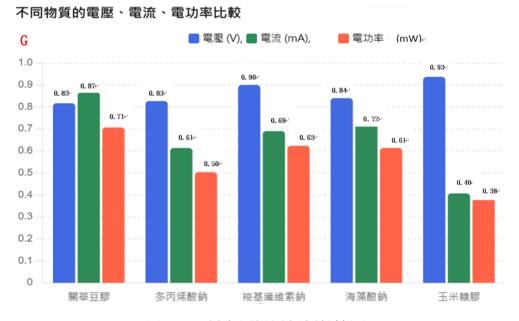


圖4-3 五種食用級增稠劑數據圖

※實驗結果顯示:

(1) 關華豆膠與多丙烯酸鈉在3g濃度時具有較高的導電能力。(但放長時間會從凍狀變成液

- 態,不適合做廚餘電池)多丙烯酸鈉在2g時達到最佳導電效果,而玉米糖膠在2g時,有較好導電表現,但3g時下降。
- (2)海藻酸鈉與羧基纖維素鈉在3g時電功率提升,但整體導電能力不如前兩者。
- (3) 玉米糖膠呈現較穩定電壓, 廚餘電池的增稠劑就採玉米糖膠。
- 8. 水果廚餘A、E桶及蔬菜廚餘A、E桶加入食用級增稠劑玉米糖膠的發電量分析:

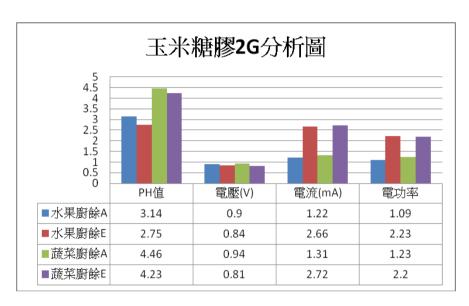


圖4-4玉米糖膠與水果、蔬菜廚餘AE桶分析圖

- (1) pH值與發電效率:從數據來看,pH值較低時(更酸性)似乎能提供更高的電流與電功率,這與微生物燃料電池的機制相符,因為某些電活性細菌在酸性環境下的電子轉移能力更強,使得發電效率提升。
- (2)不同廚餘類型的影響:水果廚餘 E 桶>蔬菜廚餘 E 桶在電功率上(2.23mW vs. 2.20mW), 但兩者差異不大。水果廚餘的 pH 值變化較劇烈,對發電影響更明顯。
- 9. 串聯廚餘電池至LED燈、計時器及電子鐘,記錄並比較不同廚餘材料的表現。(金屬寬2cm 長5cm 厚度0.3mm。廚餘水E桶100ml+玉米糖膠增稠劑2G ,電極深度固定為4cm,寬度6cm)

表4-27 水果電池串聯數據表

水果廚	電壓	電流	電功率	LED燈	電子鐘	計時器	水果廚	電壓	電流	電功率	LED燈	電子鐘	計
餘	(V)	(MA)					餘	(V)	(MA)				時
A桶							B桶						器
	①0.90	①1. 78						①0.87	①2.76				
1杯	20.90	21.61	0.89X1.62	X	X	X	1杯	20.83	22.63	0.84X2.66	X	X	X
	30.88	31.47						30.82	32.59				
平均	0.89	1.62	1.44				平均	0.84	2.66	2. 23			
	①1. 27	①1.74						①1. 54	①3.22				
2杯	21.70	21.66	1.56X1.74	X	V	V	2杯	2 1.55	②3.14	1.55X3.15	X	X	X
	31.72	31.82						31.56	33.11				
平均	1.56	1.74	2.71				平均	1. 55	3. 15	4. 88			
	①2. 63	①1.86						12. 29	①3.56				
3杯	②2.64	21.10	2. 63X1. 56	V	V	V	3杯	②2. 31	②3.50	2. 31X3. 50	X	V	V
	32.64	③1.74						③2. 33	33.45				
平均	2. 63	1.56	4. 10				平均	2. 31	3.50	8. 08			
	①3.39	①1.86						①2. 38	①3.55				
4杯	②3.43	21.77	3. 42X1. 82	V	V	V	4杯	②2. 37	②3.60	2. 37X3. 62	X	V	V
	33.44	31.84						32. 38	33.72				
平均	3. 42	1.82	6. 22				平均	2. 37	3.62	8. 57			
								①3.08	①4.00				
							5杯	②3. 12	24.00	3. 13X4. 10	V	V	V
								33. 19	34.30				
							平均	3. 13	4.10	12. 83			

- (1)從表4-27顯示當發電功率低於 2.71mW,無法點亮LED燈或啟動電子設備。
- (2) E 桶在5杯時能夠點亮LED燈,而A桶則需要3杯。這顯示更高的電壓與電流才能啟動高功率設備(如LED燈)。當電功率超過8.08mW時,可驅動電子鐘與計時器;當超過12.83mW時,LED燈也可亮起。

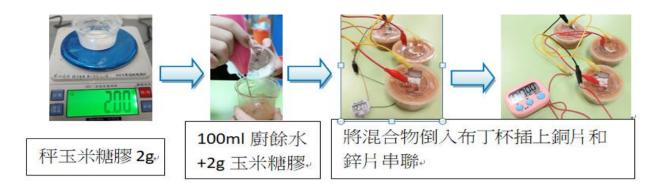
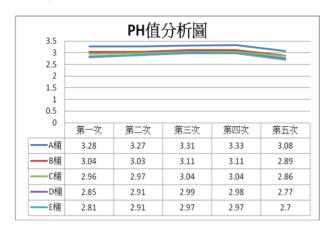


表4-28 蔬菜電池串聯數據表


蔬菜	電壓	電流	電功率	LED燈	電子	計時	蔬菜	電壓(V)	電流(MA)	電功率	LED燈	電子	計時
廚餘	(V)	(MA)			鐘	器	廚餘					鐘	器
A桶							B桶						
	①0.94	①0.91						①0.75	①4. 12				
1杯	20.96	21.80	0.95X1.44	X	X	X	1杯	②0.77	24.02	0. 76X4. 02	X	X	X
	③0.97	31.62						③0.77	33.94				
平均	0.95	1.44	1.36				平均	0.76	4. 02	3.05			
	①1.72	1 1.72						①1.43	①3.97				
2杯	21.78	21.51	1. 76X1. 61	V	V	V	2杯	21.47	② 4. 18	1. 44X4. 01	X	V	V
	31.79	31.62						③1.42	33.89				
平均	1. 76	1.61	2. 83				平均	1. 44	4. 01	5. 77			
	①2. 79	11.86						①2.35	14.64				
3杯	22.80	② 1.83	2. 79X1. 74	V	V	V	3杯	②2.36	② 4. 35	2. 35X4. 42	V	V	V
	32.80	31.54						③2.36	34. 28				
平均	2. 79	1.74	4. 85				平均	2. 35	4. 42	10.38			
	①3.37	1 1.35						①2.71	①4. 24				
4杯	②3.51	② 1.36	3. 46X1. 34	V	V	V	4杯	②2.82	②4.38	2. 80X4. 24	V	V	V
	33.52	31.32						32.89	③4. 10				
平均	3.46	1.34	4. 63				平均	2.80	4. 24	11.87			

※實驗結果顯示:從表4-28顯示在所有條件下,E桶的電流與電功率均遠高於A桶,顯示其內部的電解質環境可能更適合電子釋放與導電。A桶2杯即可驅動LED 燈與電子鐘、計時器。

伍、 研究結果

一、水果廚餘桶113年7月2日入桶至113年12月8日結束測試,一共分成五次測試收集數據日期分別為: (8/07、9/23、10/22、11/12、12/08),研究結果分析如下:

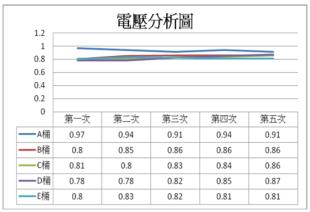
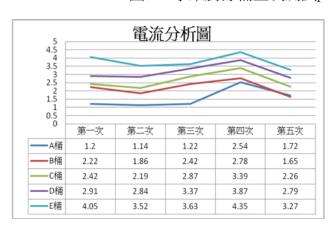



圖5-1 水果廚餘桶五次測試pH值及電壓分析圖

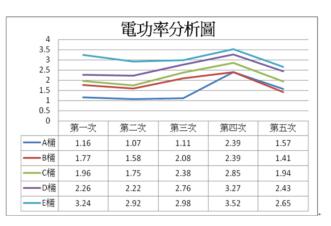


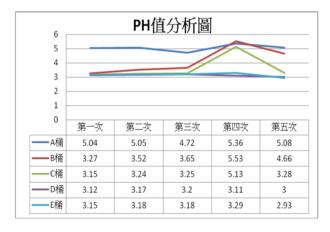
圖5-2 水果廚餘桶五次測試電流及電功率分析圖

從圖5-1至圖5-2結論分析如下:

(一) 鹽濃度對發電效能的影響

- 1.電流與電功率增加:鹽濃度越高,離子濃度提升,導電性增強,進而提升發電效能。例如,20g 鹽(0.71%)B桶:電流 2.22mA,電功率 1.77mW; 80g 鹽(2.74%)E桶:電流 4.05mA,電功率 3.24mW,顯示鹽能有效提高發電表現。
- 2.穩定上升趨勢:E桶($20g \rightarrow 80g$)電功率從 1.77mW 增至 3.52mW,顯示適量鹽能降低內阻,提高電子流動性。

(二) pH值對發電效能的影響


1.鹽使pH降低,助於發電:NaCl 加速廚餘分解,使環境更酸,有利於電子 釋放。但pH降低對發電量的影響較小,主要還是來自鹽提升導電性。

(三) 電壓穩定性

1.電壓變化不大(0.81V-0.94V):不同鹽濃度的影響主要反映在電流與功率,電壓變動幅度小,顯示電壓較受廚餘成分影響。

(四) 發電效能下降原因

- 1.微生物活性降低:隨時間推移,有機物消耗、微生物活力減弱,導致發電下降。
- 2.電解質變化:長期存放可能導致鹽沉澱或電解質飽和,使離子遷移受阻, 降低發電效率。但本研究中鹽未達飽和,因此影響有限。
- 二、蔬菜廚餘桶113年7月16日入桶至114年1月22日結束測試,一共分成五次測 試日期如下(9/21、10/12、11/09、12/09、114/1/08)收集數據,研究結果分析 如下:

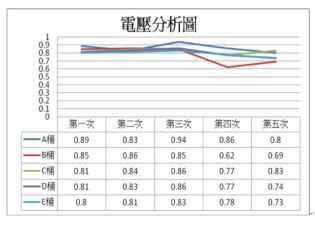


圖5-3 蔬菜廚餘桶五次測試pH值及電壓分析圖

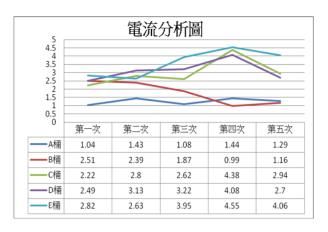


圖5-4 蔬菜廚餘桶五次測試電流及電功率分析圖

從圖5-3至圖5-4結論分析如下:

(一)pH值趨勢:

- 1. A桶(無鹽)pH值較高(約5.0),發酵酸度低,影響發電效率。
- 2.E桶(含鹽)pH值隨鹽量增加而下降(B桶最高5.53,E桶最低2.93),酸 性環境有助於提升導電性。

(二)電壓變化:

- 1. A桶電壓變動小(0.80~0.94V),影響不顯著。
- 2. B-E桶電壓範圍 0.62~0.86V,鹽濃度對電壓影響較小,主要影響電流與功率。

(三)電流與電功率趨勢:

- 1. A桶(無鹽)發電效能最低。
- 2. B桶(20g 鹽)發電效能波動,最高 2.13mW,最低 0.61mW,可能受pH 影響。
- 3. C桶(40g 鹽)第四次測量達最高 3.37mW,後期略降至 2.44mW。
- 4. D桶(60g 鹽)與 E桶(80g 鹽)效能最佳(D桶最高 3.14mW,E桶最高 3.54mW),顯示鹽可提升發電效率。

(四)發電效能逐漸下降原因:

D桶從 3.14mW 降至 1.99mW, E桶從 3.54mW 降至 2.96mW, 顯示微生物活性下降、有機物消耗減少, 使發電量逐步降低。

三、探討不同電極尺寸(長度、寬度、厚度)對於水果與蔬菜廚餘發電效果的影響:

表5-1 水果廚餘E桶不同電極尺寸平均值統計分析表

電極尺寸 (cm/mm)	pH 值	電壓 (V) 平均	電流 (mA) 平均	電功率 (mW) 平均
長10×寬1×厚0.3mm	3.42	0.83	2.74	2.27
長5 × 寬2 × 厚0.3mm	3.42	0.74	4.60	3.40
長5 × 寬3 × 厚0.3mm	3.42	0.77	3.38	2.60
長5 × 寬2 × 厚1.0mm	3.42	0.77	2.98	2.29

表5-2 蔬菜廚餘E桶不同電極尺寸平均值統計分析表

電極尺寸 (cm/mm)	pH 值	電壓 (V) 平均	電流 (mA) 平均	電功率 (mW) 平均
長10×寬1×厚0.3mm	3.43	0.80	2.74	1.60
長5×寬2×厚0.3mm	3.43	0.76	3.94	2.99
長5×寬3×厚0.3mm	3.43	0.79	3.81	3.00
長5 × 寬2 × 厚1.0mm	3.43	0.78	2.95	2.30

從表5-1~表5-2數據分析如下:

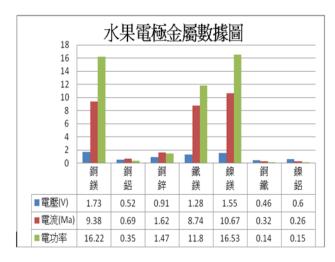
1.電極反應面積影響

- (1)電極長寬的變化會影響與廚餘溶液的接觸面積,影響電子的流動。
- (2)長5× 寬2 cm 的銅/鋅電極,在水果廚餘中產生最高電流與功率,顯示 此尺寸對該溶液較適合。
- (3)長5 × 寬3 cm 的電極在蔬菜廚餘中電功率最高,可能與離子遷移與蔬菜組成有關。

2.厚度對導電的影響

- (1)1.0mm 厚的電極理論上電阻較小,但因表面接觸電解液的部分有限, 較厚的金屬內部可能沒有充分參與電化學反應,影響了電流。
- (2)0.3mm 厚的電極可以讓電子更快釋放並傳遞,提高電流輸出。

3.溶液內部的離子傳遞


(1)水果廚餘與蔬菜廚餘的pH值相近(約3.42-3.43),顯示其酸性環境可

能會影響電極的腐蝕與電子釋放速率。

(2)水果廚餘的某些有機酸可能與鋅的氧化反應較活躍,使得5×2 cm電極 組合產生最佳電流。

4. 氣泡影響

- (1)電化學反應會產生氣泡,如氫氣(H2),這些氣泡可能阻擋電極與電解質的接觸,影響電流穩定性。
- (2)厚度較薄的電極(0.3mm)可能較不容易累積氣泡,確保更穩定的電流輸出。
- 四、測試不同金屬(銅、鋅、鋁、鎂、鐵、鎳)作為水果或蔬菜廚餘電池的正負極,分析其電壓和電流輸出分析

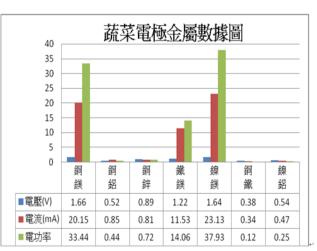


圖5-5 蔬菜廚餘、水果廚餘A桶搭配不同電極金屬分析圖

- (一) 水果廚餘電壓、電流表現最佳組合:
 - 1.銅-鎂組合具有最高電壓 (1.73V)及高電流輸出 (9.38mA),是表現最佳的組合。

 - 3.鐵一鎂(1.28V, 8.74mA, 11.18mW)表現尚可,可作為備選
- (二)蔬菜廚餘電壓、電流表現最佳組合:

- 2. 銅-鎂組合則擁有最高電壓輸出,可能適合需要較高電壓的裝置。
- 3. 鐵一鎂(1.22V,11.53mA,14.06mW)穩定輸出功率適中可作為備撰方案。

活性較強的金屬容易失電子,成為負極(氧化反應)。活性較弱的金屬則容易得電子為正極(還原反應)。兩者的活性差距越大,電位差越高,發電量也越大。

五、不同食用級增稠劑對發電效果的影響分析

表5-3 食用級增稠劑平均值分析表

增稠劑	pH 值範圍	平均電壓 (V)	平均電流 (mA)	平均電功率 (mW)
玉米糖膠	5.63 ~ 5.85	0.90V	0.69mA	0.62mW
海藻酸鈉	7.02 ~ 7.22	0.83V	0.61mA	0.50mW
羧基纖維素鈉	7.11 ~ 7.43	0.84V	0.72mA	0.61mW
多丙烯酸鈉	8.11 ~ 8.34	0.82V	0.87mA	0.70mW
關華豆膠	5.97 ~ 6.90	0.94V	0.48mA	0.45mW

- (一)電壓表現:關華豆膠最高,關華豆膠(0.94V)>玉米糖膠(0.90V)>海藻酸鈉(0.83V)≈羧基纖維素鈉(0.84V)>多丙烯酸鈉(0.82V)。關華豆膠的電壓最高,顯示其材料對電池內部電位影響較大。
- (二)電流表現:多丙烯酸鈉最高,多丙烯酸鈉(0.87mA)>羧基纖維素鈉(0.72mA)>玉米糖膠 (0.69mA)>海藻酸鈉(0.61mA)>關華豆膠(0.48mA)。多丙烯酸鈉在電流方面最強,顯示離子傳導能力較佳。
- (三)電功率表現:多丙烯酸鈉最高,多丙烯酸鈉(0.70mW)>玉米糖膠(0.62mW)≈羧基纖維素 鈉 (0.61mW)>海藻酸鈉(0.50mW)>關華豆膠(0.45mW)。多丙烯酸鈉的發電功率最 高,表示其能夠轉化最多的能量,適合用於提高生物電池效能。

應用場景	推薦增稠劑	原因
最大發電效能 (高功率輸出)	多丙烯酸鈉	擁有最高的電流與電功率・導電性最佳
需要較高電壓	關華豆膠	擁有最高的電壓・但電流與功率較低
平衡電壓與電流 (綜合效能佳)	玉米糖膠	電壓與功率皆排名第二・穩定度較好

桶別	杯數	電壓 (V) 平均	電流 (mA) 平均	電功率 (mW) 平均	LED 燈	電子鐘	計時器
A 桶	1 杯	0.89	1.62	1.44	X	X	X
	2 杯	1.56	1.74	2.71	X	✓	✓
	3 杯	2.63	1.56	4.10	✓	✓	✓
	4杯	3.42	1.82	6.22	✓	✓	✓
E桶	1杯	0.84	2.66	2.23	X	X	X
	2 杯	1.55	3.15	4.88	X	X	X
	3 杯	2.31	3.50	8.08	X	✓	✓
	4杯	2.37	3.62	8.57	X	✓	✓
	5 杯	3.13	4.10	12.83	✓	✓	✓

表5-4 水果廚餘電池串聯平均值分析圖

表5-5 蔬菜廚餘電池串聯平均值分析圖

桶別	杯數	電壓 (V) 平均	電流 (mA) 平均	電功率 (mW) 平均	LED 燈	電子鐘	計時器
A 桶	1杯	0.95	1.44	1.36	X	X	X
	2 杯	1.76	1.61	2.83	✓	✓	✓
	3 杯	2.79	1.74	4.85	✓	✓	✓
	4杯	3.46	1.34	4.63	✓	✓	✓
E桶	1杯	0.76	4.02	3.05	X	X	X
	2 杯	1.44	4.01	5.77	X	✓	✓
	3 杯	2.35	4.42	10.38	✓	✓	✓
	4杯	2.80	4.24	11.87	✓	✓	✓

從表5-4~5-5可看出電子鐘與計時器啟動門檻比較低,LED燈的啟動雖與電壓有關,但不完全由電壓決定,還受到電流與功率影響。隨著杯數的增加,電壓(V)、電流(mA)、電功率(mW)均呈上升趨勢。E桶在相同杯數時,通常能達到較高的電壓與電功率,顯示其電化學性能可能較A桶優越。

- (一) LED燈的啟動條件: LED燈的最低啟動電壓依據顏色不同而不同,紅光約 1.8V~2.2V,小型LED燈通常需要5mA~20mA的電流才能發光,若電壓過低,LED不會亮起;若電流不足,LED可能微弱發光或不穩定,即使電壓足夠,如果電流太小,LED 也無法啟動。
- (二) LED燈在水果與蔬菜廚餘發電中的表現:

- 1. LED 燈的點亮門檻約在 2.5V 以上,因此在3杯以上才開始啟動。
- 2. 電子鐘與計時器則對電壓與電功率要求較低,通常在2杯以上即可運行。
- 3. E桶表現更優異,能在較少杯數時啟動更多設備。

(三) 可能的機制與應用

- 1. E桶在相同條件下,電壓、電流、電功率表現均優於 A桶,顯示其更 高的能量轉換效率。
- 2. 當杯數增加時,A桶與 E桶的電壓、電功率均提升,但 E桶在 3 杯時已經達到 A桶 4 杯的效果,顯示其效能更佳。
- 3. E桶在 5 杯時,電功率可達 12.83 mW,適合應用於小型電子設備供電。
- 4. 若應用於 微型能源供應,E桶在較低杯數下便能提供足夠電能,適 合作為可行的電源方案,此方向值得深入研究,以評估其在可再生能 源與微型發電技術中的應用潛力。

陸、 結論

本研究探討了水果與蔬菜廚餘發電的影響因素,包括鹽濃度、pH值、電極 尺寸、不同金屬電極、增稠劑影響、電子設備啟動條件等,並分析其發電效能 與影響機制。綜合各項實驗結果,得出以下主要結論:

- 1.實驗一:各類單項蔬菜汁和水果汁 pH 值、電壓、電流統計的實驗中發現: (1)蔬菜單項電壓最高空心菜汁,電流最大馬鈴薯汁,電功率最大空心菜汁和馬鈴薯汁。(2)水果選項電壓最高蘋果汁,電流最大檸檬汁,電功率最大檸檬汁。
- 2.實驗二:我們在廚餘電池中加入食鹽是因為:(1)因為廚餘會發臭,讓它脫水,水分減少則體積變小,並且減少和抑制臭味的效果。(2)我們實驗是使用生廚餘(蔬菜水果),但是如果推廣到熟廚餘(烹煮烘烤過的食材),有烹煮的食物大多加入鹽巴、味精、醋等調味料,加鹽會更接近菜餚的實際情況。(3)鹽水在五年級時自然課了解具有導電性,因為含有電解質正負離子,所以會提高發電量,因此我們假設不同鹽濃度會影響發電效

- 能,因此於 B、C、D、E 桶 分別加入 20g、40g、60g、80g 鹽,A 桶作為對照組(無鹽), 結果發現增加鹽濃度(20g~80g)可提升電流與電功率,但電壓下降,鹽量超過可能影響 導電性。
- 3. 在實驗一和二中,另外有發現 pH 值(酸性)環境有助於電子釋放與微生物發電效能, pH 2.7~3.4 時發電量表現最佳。
- 4. 實驗三:金屬物(以鋅、銅為例)長度、寬度、厚度電壓、電流統計中,發現實驗最佳 電極尺寸:水果廚餘 5cm×2 cm(0.3mm 厚),蔬菜廚餘 5cm×3 cm(0.3mm 厚)。
- 5. 實驗四:試不同金屬(銅、鋅、鋁、鎂、鐵、鎳)作為水果或蔬菜廚餘電池的正負極, 分析其電壓和電流輸出,水果和蔬菜是銅(+正極)鎂金屬(-極)發電電壓最大表現最 佳,鎳(+正極)鎂(-負極)組合提供最高電功率(16.53mW~37.93mW)最大。
- 6.水果電池 pH 值偏酸, 鎂金屬的氧化速度超快, 因此冒泡泡。
- 7.實驗五:不同食用增稠劑的實驗中,可以發現適量的增稠劑可提高發電效能,玉米糖焦 (2g)最為穩定,效果最佳。關華豆膠與多丙烯酸鈉在 3g 濃度時具有較高的導電能力。(但 放長時間會從凍狀變成液態,不適合做廚餘電池)多丙烯酸鈉在 2g 時達到最佳導電效果,而玉米糖膠在 2g 時,有較好導電表現,但 3g 時下降,而海藻酸鈉與羧基纖維素鈉在 3g 時電功率提升,但整體導電能力不如前兩者。
- 8.實驗六:水果廚餘電池串聯實驗中,發現顯示當發電功率低於 2.71mW,無法點亮 LED 燈或啟動電子設備。水果廚餘 E 桶在 5 杯時能夠點亮 LED 燈,而 A 桶則需要 3 杯。這顯示更高的電壓與電流才能啟動高功率設備(如 LED 燈)。當電功率超過 8.08mW 時,可驅動電子鐘與計時器;當超過 12.83mW 時,LED 燈也可亮起。當電功率超過 12.83mW 時,LED 燈可成功亮起,顯示電流與功率的關鍵影響。
- 9.實驗六中另外發現蔬菜廚餘電池 E 桶的電流與電功率均遠高於 A 桶,顯示其內部的電解 質環境可能更適合電子釋放與導電。A 桶 2 杯即可驅動 LED 燈與電子鐘、計時器。因此 蔬菜廚餘電池發電效率較高,適合未來進一步研究與應用。
- 10. 本研究不僅深化了對廚餘電池發電機制的理解,也為廢棄物再利用與綠色能源發展提供了新思路。然而,實務應用仍需進一步克服能量密度與穩定性問題,例如:提升微生物

燃料電池的效率、優化電極材料,因為鎂鎳等金屬價值高要探索更經濟可行的增效方法。 未來若能將此技術擴展至更大規模,搭配智慧電網或儲能系統,將有助於推動永續能源 發展,實現資源循環與減少環境負擔的雙重目標。

柒、 參考文獻資料

- 1. 「氫」愛的,「**タメ」**」把我電倒了一廚餘發電探究。六和學校財團法人桃園市六和高級中等學校。中華民國第60屆中小學科學展覽會作品說明書。
- 2. 「鹽」來有電真神奇—鹽水燃料電池效能探討與應用。新竹市第四十屆中小學科學展覽會作品說明書
- 3. 蘇偉銓(民 112)。南一版五上自然與生活科技第三單元「水溶液的導電性」。台南市。 南一書局。
- 4. 微生物電力公司一微生物燃料電池之變因探討。國立臺中女子高級中學。中華民國第四十七屆中小學科學展覽會作品說明書
- 5. 廚餘來電了!。臺北市立新民國民中學。中華民國第四十五屆中小學科學展覽會作品說明書。