藻水對水蚤生長之影響

關 鍵 詞: 水蚤、微藻、藻水

研究生:游珺皓 指導老師:鄭家逸

摘要

本研究探討了不同藻水濃度對水蚤生長與繁殖的影響。水蚤是水生系統中的基礎物種,藻水濃度則是影響其生長與生存的重要因素之一。通過設計不同藻水濃度的實驗,結果顯示,過高或過低的藻水濃度都會對水蚤的生存產生不利影響,且藻水濃度為10cc的水蚤能夠存活最長時間並保持較好的生長狀態。

壹、前言

水蚤(Daphnia magna)作為一種重要的浮游動物,在水生生態系統中扮演著至關重要的角色。它們不僅是水生食物鏈中的基礎物種,還能有效反映水體環境的變化,因此常被應用於水質監測和生態風險評估中。水蚤的生長與繁殖受到多種環境因素的影響,其中藻水濃度是影響其生長發育的重要因素之一。藻類是水蚤的主要食物來源,過多或過少的藻水濃度都會對水蚤的生長和存活造成不利影響。

本研究旨在探討不同藻水濃度對水蚤生長和繁殖的影響。藉由設計不同濃度的藻水環境,我們將觀察水蚤在不同條件下的生存情況,並分析藻水濃度如何影響其生長速率、發育過程和繁殖能力。這將有助於了解藻類濃度對水蚤健康的最佳範圍,並為水生生物養殖、環境管理以及水質監測提供理論支持和實踐依據。

通過本研究, 我們希望能夠揭示藻水濃度與水蚤生長之間的關係, 進一步豐富對水生生物生態學的理解, 並為水質保護與生態維護提供科學依據。

一、研究動機

今年暑假我與媽媽的同事一同到宜蘭頭城鄉旅行,沿路觀賞美麗的田野風光與水田中有趣的各種生物,我們汲水桶採集到稻田裡的水,在水中我發現一種會跳動的橘色生物,牠移動的方式不像魚一樣用游的,而是用跳的,之後我從老師的口中得知這種生物叫水蚤,更上網搜尋了關於水蚤的資料,而這顏色獨特且運動方式特別的生物也激起我的好奇心,所以決定飼養水蚤,但經過了數次的失敗,我又上網搜尋到了培養水蚤效果最好的藻水,經過幾次實驗後,我決定進一步探討藻水濃度對水蚤的影響。

二、研究目的

- (一)探討藻水濃度對水蚤的影響。
- (二)維持水蚤族群的最佳作為。

三、研究問題

藻水的量與水蚤的生存? 相同藻水量但不同水量與水蚤的生存?

四、文獻回顧

一、藻水(綠藻)Rhodophyta

¼ 綠藻(Green Algae)

- 學名: Chlorophyta (綠藻門)
- 常見顏色:鮮綠色(因為含有大量葉綠素 a 和 b)
- 生活環境:淡水、海水、甚至陸地(比如潮濕的牆面)
- 常見種類:小球藻(Chlorella)、水綿(Spirogyra)、衣藻(Chlamydomonas)
- 特色:
 - 與高等植物有共同的祖先, 結構和光合作用機制很類似。
 - 部分種類可以大量繁殖造成「藻華」,使水變成綠色(這就是「藻水」)。
 - 有些品種可食用或作為健康補充品(如小球藻、螺旋藻)。

二、水蚤(Daphnia magna)

1.水蚤基本介紹:

根據台灣生物多樣性網站指出水水蚤的分類如下

水蚤(溞屬)

界:動物界 Animalia

門:節肢動物門 Arthropoda

亞門:甲殼亞門 Crustacea

剛:鰓足綱 Branchiopoda

目:枝角目 Cladocera

科:溞科 Daphniidae

屬:溞屬 Daphnia

圖片說明:水蚤構造

根據水產生物資源中心表示:水蚤(Daphnia)是一類小型的淡水甲殼類動物,通常被稱為"水中的跳蚤"或"水跳蚤"。它們的身體呈透明或半透明狀,身長一般在1至5

毫米之間, 主要分布於淡水環境, 如湖泊、池塘、河流和水庫等水域中。水蚤是重要的浮游動物之一, 通常生活在水體的上層, 並且是許多水生生物的食物來源。

沼氣推動利用網表示:水蚤的應用如下

1. 魚類餌料:

○ 水蚤被廣泛用作水產養殖中的餌料,尤其是魚類養殖中。由於其營養豐富且易於生長,水蚤能為幼魚提供必要的蛋白質和脂肪。

2. 水質監測:

○ 在生態學研究中, 水蚤被用作研究水體污染的生物指標。由於水蚤對環境變化非常敏感, 它們的行為、繁殖和生長情況可以反映水域中的污染物質。

五、相關文獻分析

(一)「掘」處逢生—東北角潮間帶近緣皺蟹Leptodius affinis之生態與挖沙行為探討摘要:近緣皺蟹 Leptodius affinis 是一種小型的潮間帶螃蟹,主要棲息在有沙且上面有石塊的 區域,以蛻殼成長,夏季蛻殼較頻繁,繁殖季在4-9月,具有固定的挖沙模式,會先在沙上爬行,碰到石頭,便背靠石頭,利用步足來回挖掘,並利用螯推開沙子,使自己沿著石頭下緣進到沙內。但牠們並非隨時都能進行挖沙,當沙子沒有淹水時,頂多僅能半個身體進去,也就說退潮時在沙內的近緣皺蟹應該都是有淹水時就已經進去,等潮水再漲上來時,才可能爬出來活動。那為什麼要挖沙且又讓自己被石頭壓著呢?研究者發現有幾個重要原因:1.受海浪影響小;2.環境溫度穩定;3.可躲避天敵及彼此間相殘;4.可遮光;5.退潮時,沙內不但保有較多水分,且正好可以緩衝石頭的重量。

優點	建議
很多圖表、數據,例如:心智圖、折線圖、 長條圖、樹狀圖,讓讀者更好理解研究者 的實驗結果,尤其是不同種類螃蟹挖砂行 為的樹狀圖可讓我知道非皺蟹屬的螃蟹沒 有明顯挖沙躲藏行為。	在實驗 4-1-1 中, 驗證近緣皺蟹躲 避浪的衝擊應該是牠們挖沙的重要 原因之一, 不清楚石下挖沙的位置 與海浪沖擊方向是否有關?

(二)中華民國第 57 屆中小學科學展覽會

1. 摘要

表格神澤氏葉蟎為農作物重要害蟲,為了解「神澤氏葉蟎」與天敵「溫氏捕植蟎」的微妙關係,進行系列實驗。葉蟎雌性成蟎體型較捕植蟎大,體長分別為 0.42±0.04及 0.38±0.01mm, 捕植蟎成蟎時期較長。捕植蟎隨機捕食,以前足作為捕食工具,卵為優先捕食來源。捕植蟎 雌蟎,平均一生約捕食 128.4 個卵。葉蟎成蟎會吐絲織網,織網使卵存活率提升,同時也使 葉蟎移動速度加快並便利大批遷徙。食物短缺時,葉蟎會於織絲網上集合成蟎球,隨風擴散 到更遠區域。葉蟎會產生黃色及黑色兩種排泄物,實驗顯示黃色排泄物能使捕植蟎退避,降 低卵的被捕食率。在捕植蟎出現下,葉蟎排泄物的黃黑比(1.97:1)轉為(3.8:1),藉由提高黃 色排泄物的比例來禦敵,真是出人意料的防禦方式。

優點	缺點
圖片很清楚, 尤其是在顯微鏡下觀察 神澤氏葉蟎時, 可讓讀者清楚的看到 神澤氏葉蟎的樣貌。	1溫氏捕植蟎的資料亦多可查詢 2.溫氏捕植蟎不容易捕捉

(三)環境因子對水蚤影響之研究

在我的研究中業有這個實驗,在環境因子對水蚤影響之研究中,他們利達用吸管口徑大小來表示溶氧量大小,並且寫出含氧量對水蚤存活率、體色、心跳的影響,但在我的實驗中,我想要精準說出含氧量的多寡,並且以水蚤生存日期的長短來表示溶0氧量的效果。

當水蚤透過嗅覺感知環境中捕食者的利他素時,它會將自己的尺寸及其後代頭盔的尺寸加倍,並且其甲殼厚度也會加倍,這使得它更不易受到捕食者的攻擊。這是一種普遍的形態變化,可以防禦不同的捕食者。

貳、研究設備及器材

1.塑膠杯 可盛裝水 蚤、藻水	TU	5.密封瓶 可避免瓶 中的水蚤 不受外界 影響		9.載玻片 可用來觀 察水蚤、藻 水	
2.微鏡顯 可用來觀 察水蚤、藻 水		6.塑膠袋 可用來平 均藻水濃 度		10.手機座 可用來拍 攝顯微鏡 下的水蚤	
3.小湯匙 可用來撈 除水中的 異物	8 6	7.白光燈 可用來聚 集水蚤	9	11.電腦 可用來查 詢水蚤、藻 水的資料, 或撰寫報 告	
4.玻璃罐 盛裝水蚤、 藻水		8.密封器 可將玻璃 罐密封		12.手機 可用來記 錄水蚤、藻 水	

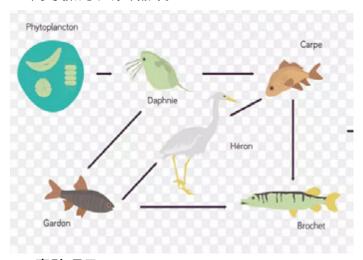
參、研究過程或方法

一、研究流程

選定題目

設計實驗

採集水蚤


製作實驗

撰寫報告

二、實驗流程

三、實驗方法與器材

(一)實驗項目

要研究出藻水對水蚤生長之影響,除了要求出藻水濃度,更要研究出哪一種培養對藻水最有幫助。

所以我會做以下幾項實驗

- 1.無藻水水蚤基本生存日期
- 可用來對比有藻水水蚤生存日期
- 2.不同藻水水量對水蚤的關係
- 在此項實驗中, 我會遇到幾項問題
- (1)每一天的天氣、藻水品質、濕度等都會對水藻造成影響解決方法:將實驗設置在同一天

一、實驗記錄

實驗一:無藻水水蚤基本生存天數(一)

1.水量:15cc 水蚤量:1 容器:寬三公分、高兩公分

- 2.水蚤來源地:宜蘭 頭城 稻田
- 3.實驗結果:在第二天時,水蚤全數死亡。

我進行了一水蚤基本生存[一]的實驗,雖然最後實驗卻以失敗告終,但在這次的失敗中,我意識到了幾項實驗的要點。

- (1)水量不能太少, 避免乾掉。
- (2)要密封, 避免外界因素干擾, 降低實驗誤差。
- (3)容器不要太窄, 讓水蚤平均照射陽光, 避免水蚤擠在一起。
- o:尚有水蚤生存
- x:水蚤全數死亡

	水蚤生存狀況
7月1日	0
7月2日	х

表一:無藻水水蚤基本生存天數(一)

實驗二:無藻水水蚤基本生存天數(二)水蚤起使數量:50

經過實驗一後, 我調整了幾個實驗的因素:

- (1)水量增加到150ml, 避免乾掉。
- (2)容器有密封,避免外界因素干擾,降低實驗誤差。
- (3)使用長: 9cm 寬: 7cm 的容器, 讓水蚤平均照射陽光, 避免水蚤擠在一起。

o:尚有水蚤生存 x:水蚤全數死亡

日期	水蚤生存狀況
7月6日	0
7月7日	0
7月8日	0
7月9日	0
7月10日	0
7月11日	0
7月12日	х

表二:無藻水水蚤基本生存天數(二)

實驗三:無藻水水蚤基本生存天數(三)

水蚤起始數量:50

日期	水蚤生存狀況
7月15日	0
7月16日	0
7月17日	0
7月18日	0
7月19日	0
7月20日	0
7月21日	x

日期	水蚤生存狀況
7月23日	0
7月24日	0
7月25日	0
7月26日	0
7月27日	0
7月28日	0
7月29日	х

實驗四:藻水濃度對水蚤的影響水質:經過自來水稀釋的藻水

水蚤數量:約20-30隻

藻水濃度以自來水加入的藻水量表示

0:尚有水蚤生存 x:水蚤全數死亡

藻水水量/ 日期	9月14日	9月15日	9月16日	9月17日	9月17日
Осс	0	0	х		
2cc	0	0	x		
4cc	0	0	X		
6cc	0	0	0	х	
8cc	0	0	0	х	
10cc	0	0	0	0	х

表三:藻水濃度對水蚤的影響

在進行完這個實驗後, 我發現0cc水蚤只有存活兩天, 但在無藻水水蚤基本生存日期實驗[二]時, 水蚤卻生存了7天, 因為7天和2天的差距過大, 所以我推出了幾項可能的原因。

- 1.實驗開始時水蚤的數量不同
- 2.水量不同第一瓶水量是100ml、第二瓶是150ml
- 3.位置不同, 陽光的照射量也不同

為了測量蚤水濃度我想出了幾項測量藻水濃度方法

- 步驟一:將竹筷底步黏上紙片,並且塗上顏色,在藻水中上下移動,藻水濃度 越濃,紙片就必須靠近頂端才看的到,反之藻水濃度越淺,就在靠近瓶底就 可以看見了。
- 步驟二:使用顯微鏡觀察藻水,算出一平方公分中平均有多少顆水藻,就是 藻水濃度。

接下來的實驗會先使用步驟一執行夾逼定理,再用步驟二精準的測量。

在裝藻水的罐子上,找出水蚤存活率最好的區間,再用顯微鏡測量。

註:夾逼定理

{指出若有兩個函數在某點的極限相同,且有第三個函數的值在這兩個函數之間, 則第三個函數在該點的極限也相同。}

- o:尚有水蚤生存
- x:水蚤全數死亡

實驗五:藻水濃度對水蚤的影響

藻水水量/日 期	10月16日	10月17日	10月17日	10月18日
12cc	0	0	0	x
14cc	0	0	х	
16cc	0	х		
18cc	0	х		

表四:藻水濃度對水蚤的影響

為了確保水量一致,下圖為第二次實驗和第三次實驗的水量對比。

後方的瓶子是第二次實驗 前方的則是第三次實驗的水量

實驗檢討:

在這次實驗中我發現

1.天氣會影響水蚤的生長

改進:可將每一次實驗設置在同一天, 讓每一罐受到的天氣影響一樣。

2.每瓶中水蚤數量不同

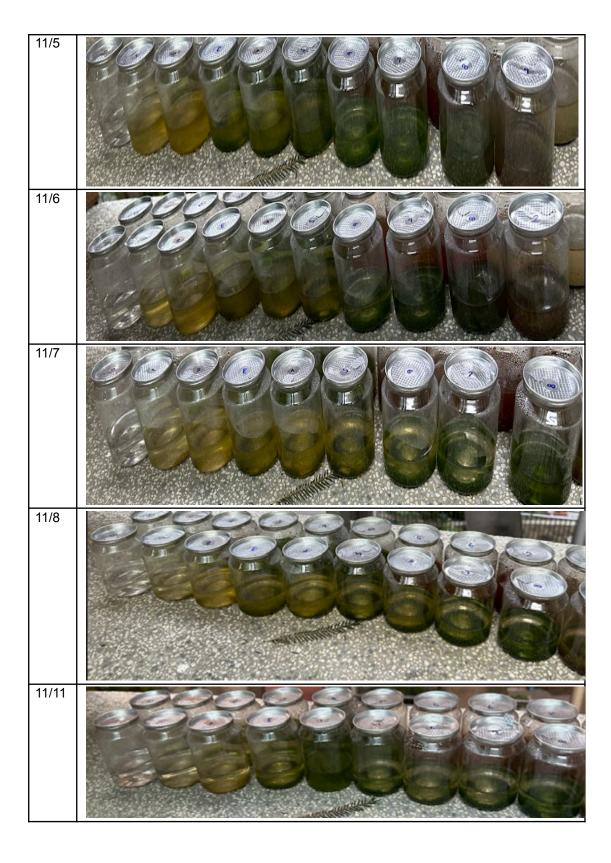
改進:目測每一瓶的數量, 使其平衡

3.藻水的品質會影響水蚤的生長

改進:可將每一次實驗設置在同一天, 讓每一罐的藻水品質一樣。

結論:接下來的實驗就是針對此結論進行考驗, 藻水濃度的上限為何?

o:尚有水蚤生存 x:水蚤全數死亡


實驗六:藻水量對水蚤的影響

	純水	2cc	4cc	6cc	8cc	10cc	12cc	14cc	16cc	18cc
day1	0	0	0	0	0	0	0	0	0	0
day2	0	0	0	0	0	0	0	0	0	0
day3	О	0	0	0	0	0	0	0	0	0
day4	0	0	0	0	0	0	0	0	0	0
day5	0	0	0	0	0	0	0	0	0	0
day6	Х	0	0	0	0	0	0	0	0	0
day7		0	0	0	0	0	0	0	0	Х
day8		0	0	0	0	0	0	0	Х	
day9		Х	0	0	0	0	Х	Х		
day10			Х	х	Х	0				
day11						Х				·

表五:藻水濃度對水蚤的影響

實驗照片

肆、研究結論

一、實驗結果分析

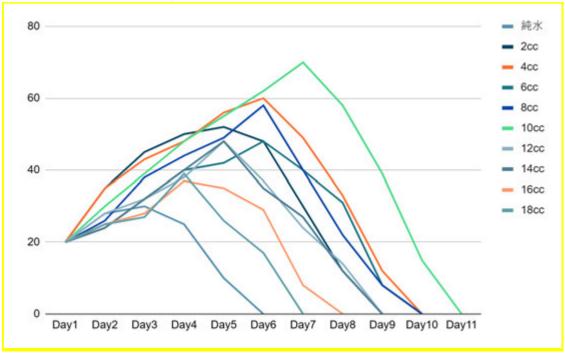
實驗四

o:尚有水蚤生存

x:水蚤全數死亡

	純水	2cc	4cc	6cc	8cc	10cc	12cc	14cc	16cc	18cc
day 1	0	0	0	0	0	0	0	0	0	0
day 2	х	х	0	0	0	0	0	0	х	Х
day 3			Х	Х	0	0	0	Х		
day 4					Х	0	х			
day 5						х				

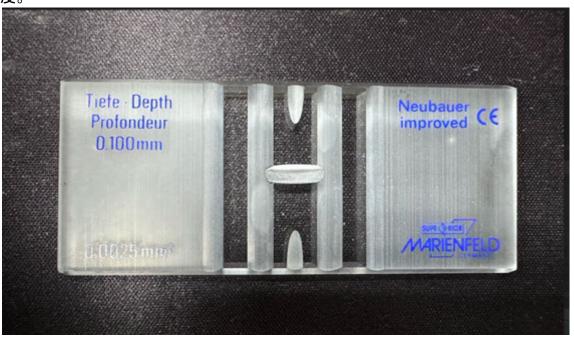
- 1.水蚤在藻水太濃或太淡的生存狀況都是第二天死亡, 就有如人類在太濃或太淡的氧氣中, 都無法生存。
- 2.在實驗的剛開始時, 2cc和4cc的藻水量是生存的最好的, 但如果把時間拉長來看, 則是10cc最好。
- 3.因為本次實驗是分成兩梯次進行,第一梯次是純水到10cc,第二梯次則是10cc到18cc,為了確保實驗的準確度,我在第二梯次時,又進行了一次10cc的實驗,結果和第一梯次時的結果一樣,才能順利接上,否則必須重作。


實驗五 o:尚有水蚤生存

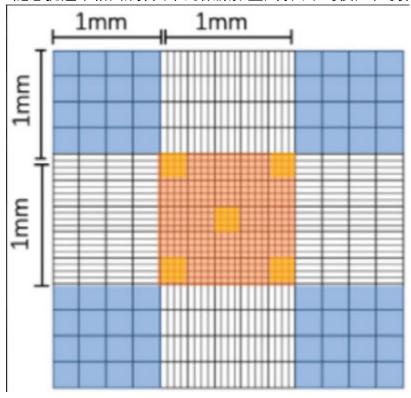
x:水蚤全數死亡

	純水	2cc	4cc	6cc	8cc	10cc	12cc	14cc	16cc	18cc
day1	О	0	0	0	0	0	0	0	0	0
day2	0	0	0	0	0	0	0	0	0	0
day3	О	0	0	0	0	0	0	0	0	0
day4	0	0	0	0	0	0	0	0	0	0
day5	О	0	0	0	0	0	0	0	0	0
day6	х	0	0	0	0	0	0	0	0	0
day7		0	0	0	0	0	0	0	0	Х
day8		0	0	0	0	0	0	0	Х	
day9		Х	0	0	0	0	Х	Х		
day1 0			х	х	х	0				
day1 1						х				

- 1.在本次實驗中, 因為水藻起始數量較多, 故生存的比較久
- 2.經過了兩次的實驗, 我可以推測出對水蚤最好的藻水濃度是10cc

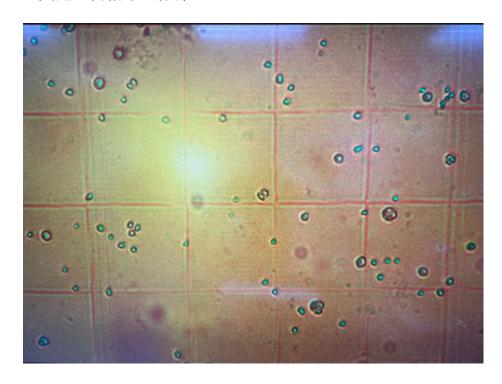

水蚤數量變化折線圖可觀察出水蚤數量的變化

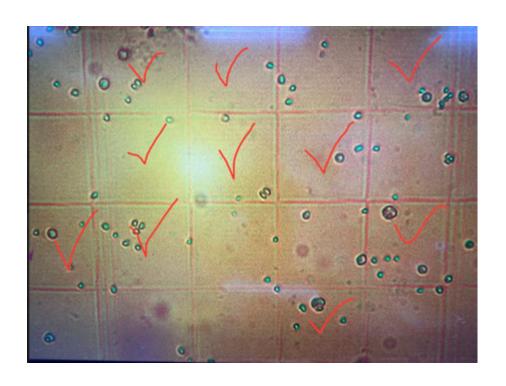
水蚤數量變化折線圖


可以發現只有10CC的藻水量讓水蚤生存到第11天, 所以10CC的藻水量最有利於水藻生存。

我們已經得出10cc的藻水對水蚤是最好的, 所以我們要來算出10cc的藻水濃度首先, 我上網購買計算微生物用的技術器, 這種技術器可以大約的算出藻水的濃度。

在顯微鏡下會發現技術器上有九宮格小格子(如下圖), 計九宮格的使用方法如下如果維生物夠大(大於1µm, 小於1mm), 則用藍色格子計算, 我使用的微藻小於1up, 所以我使用最中間橘色的小格子。


小格子有四條邊, 計算微藻時, 只能隨機計算兩邊(壓在線上的微藻) 隨意挑選十格, 計算其中的微藻數量, 得出平均後, 即可算出微藻濃度。


我使用了稀釋了16次的藻水來計算濃度,也就是32分之1的藻水

下圖是九宮格中的微藻

下圖是我隨機挑選的十格 微藻數量:6535146375 平均:4.5

接下來就可算出1毫升藻水的濃度

先算出1毫升藻水的濃度(厚度 長 寬) 4.5x16x25x10^4x32=576000000

代表每1毫升的藻水中有5億7千6百萬個微藻 下圖是計算一瓶幾個微藻的算式

$$\frac{1.152\times5\times10^9}{90+10} = 5760000000$$

所以我得出的結論是

對水蚤最佳的藻水量是

1毫升中有576000000個微藻

伍、研究建議

- 1. 選題不要隨便跟風
 - 不是每個熱門的研究題目都適合你。做之前先了解一下這個領域的內容,確定自己能接受每天接觸這些資料和實驗,這樣比較能堅持下去。
- 2. 實驗不一定成功,學會接受失敗 生物實驗變數太多,結果可能完全不如你預期,甚至什麼都沒得到。這是研究的 一部分,別太焦慮結果,先學會接受過程中的不確定性。
- 3. 從一開始就記錄好每個細節 記下每次實驗的配方、過程、變化,這些都很重要。沒有清楚的記錄,等到要寫報 告或再重做實驗時,會比較難組織。
- 4. 有問題就問,不要自己卡住 遇到不懂的地方,及時問學長姐或老師,不要覺得自己很丟臉或浪費時間。很多時候一個問題解決了,能省掉你很多時間。
- 5. 別把時間排得太緊 實驗會遇到各種意外,像是儀器壞了、細胞長得慢等等,所以行程要留點空間, 不要把時間排太緊。
- 6. 研究早期重點是學會做事, 而不是出成果 現在最重要的是學會怎麼設計實驗、分析資料、讀文獻, 這些技能打好基礎, 將 來自然會有好結果。

陸、研究心得

這次的研究讓我真的有一種「原來事情沒這麼簡單」的感覺。我們在找資料的時候,看到了很多關於水藻、蚤水的題目,但其中的資料都不是我需要的,讓我印象很深刻的是,有一篇研究提到「環境因子對水蚤的影響之研究」,在題目看來與我的主題非常相關,但其實內容很多都無法參考。幸好最後找到由教育部提供的網站,才得到正確的資料。

所以,這次研究不只讓我學到怎麼找資料、整理資訊,更重要的是,讓我對一個原本覺得「很平常」的生物,有了更深入的了解。就知道其對生物鏈有多大的影響。而且最棒的是,當投入一個主題久了,我發現自己不只學到了知識,也學到了常識。

參考文獻資料

賴韻如。(1994)。環境因子對水蚤影響之研究取自 https://twsf.ntsec.gov.tw/activity/race-1/34/pdf/34m/069.pdf

<u>王璽瑄、林郁翔、曹宇承、李蘊宬</u>。(2023年)。「掘」處逢生—東北角潮間帶近緣皺蟹Leptodius affinis之生態與挖沙行為探討。取自https://twsf.ntsec.gov.tw/activity/race-1/63/pdf/NPHSF2023-080307.pdf?0.8841410625138939